Three matching intersection property for matching covered graphs
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3.

Voir la notice de l'article provenant de la source Episciences

In connection with Fulkerson's conjecture on cycle covers, Fan and Raspaud proposed a weaker conjecture: For every bridgeless cubic graph $G$, there are three perfect matchings $M_1$, $M_2$, and $M_3$ such that $M_1\cap M_2 \cap M_3=\emptyset$. We call the property specified in this conjecture the three matching intersection property (and 3PM property for short). We study this property on matching covered graphs. The main results are a necessary and sufficient condition and its applications to characterization of special graphs, such as the Halin graphs and 4-regular graphs.
@article{DMTCS_2017_19_3_a16,
     author = {Lin, Hao and Wang, Xiumei},
     title = {Three matching intersection property for matching covered graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-3-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-16/}
}
TY  - JOUR
AU  - Lin, Hao
AU  - Wang, Xiumei
TI  - Three matching intersection property for matching covered graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-16/
DO  - 10.23638/DMTCS-19-3-16
LA  - en
ID  - DMTCS_2017_19_3_a16
ER  - 
%0 Journal Article
%A Lin, Hao
%A Wang, Xiumei
%T Three matching intersection property for matching covered graphs
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-16/
%R 10.23638/DMTCS-19-3-16
%G en
%F DMTCS_2017_19_3_a16
Lin, Hao; Wang, Xiumei. Three matching intersection property for matching covered graphs. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3. doi : 10.23638/DMTCS-19-3-16. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-16/

Cité par Sources :