Periodic balanced binary triangles
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3.

Voir la notice de l'article provenant de la source Episciences

A binary triangle of size $n$ is a triangle of zeroes and ones, with $n$ rows, built with the same local rule as the standard Pascal triangle modulo $2$. A binary triangle is said to be balanced if the absolute difference between the numbers of zeroes and ones that constitute this triangle is at most $1$. In this paper, the existence of balanced binary triangles of size $n$, for all positive integers $n$, is shown. This is achieved by considering periodic balanced binary triangles, that are balanced binary triangles where each row, column or diagonal is a periodic sequence.
@article{DMTCS_2017_19_3_a12,
     author = {Chappelon, Jonathan},
     title = {Periodic balanced binary triangles},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-3-13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-13/}
}
TY  - JOUR
AU  - Chappelon, Jonathan
TI  - Periodic balanced binary triangles
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-13/
DO  - 10.23638/DMTCS-19-3-13
LA  - en
ID  - DMTCS_2017_19_3_a12
ER  - 
%0 Journal Article
%A Chappelon, Jonathan
%T Periodic balanced binary triangles
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-13/
%R 10.23638/DMTCS-19-3-13
%G en
%F DMTCS_2017_19_3_a12
Chappelon, Jonathan. Periodic balanced binary triangles. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3. doi : 10.23638/DMTCS-19-3-13. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-13/

Cité par Sources :