Asymptotic results on Klazar set partition avoidance
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

We establish asymptotic bounds for the number of partitions of $[n]$ avoiding a given partition in Klazar's sense, obtaining the correct answer to within an exponential for the block case. This technique also enables us to establish a general lower bound. Additionally, we consider a graph theoretic restatement of partition avoidance problems, and propose several conjectures.
@article{DMTCS_2018_19_2_a8,
     author = {Alweiss, Ryan},
     title = {Asymptotic results on {Klazar} set partition avoidance},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/}
}
TY  - JOUR
AU  - Alweiss, Ryan
TI  - Asymptotic results on Klazar set partition avoidance
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/
DO  - 10.23638/DMTCS-19-2-7
LA  - en
ID  - DMTCS_2018_19_2_a8
ER  - 
%0 Journal Article
%A Alweiss, Ryan
%T Asymptotic results on Klazar set partition avoidance
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/
%R 10.23638/DMTCS-19-2-7
%G en
%F DMTCS_2018_19_2_a8
Alweiss, Ryan. Asymptotic results on Klazar set partition avoidance. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-7. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/

Cité par Sources :