Asymptotic results on Klazar set partition avoidance
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2
Voir la notice de l'article provenant de la source Episciences
We establish asymptotic bounds for the number of partitions of $[n]$ avoiding a given partition in Klazar's sense, obtaining the correct answer to within an exponential for the block case. This technique also enables us to establish a general lower bound. Additionally, we consider a graph theoretic restatement of partition avoidance problems, and propose several conjectures.
@article{DMTCS_2018_19_2_a8,
author = {Alweiss, Ryan},
title = {Asymptotic results on {Klazar} set partition avoidance},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2017-2018},
doi = {10.23638/DMTCS-19-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/}
}
TY - JOUR AU - Alweiss, Ryan TI - Asymptotic results on Klazar set partition avoidance JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-7/ DO - 10.23638/DMTCS-19-2-7 LA - en ID - DMTCS_2018_19_2_a8 ER -
Alweiss, Ryan. Asymptotic results on Klazar set partition avoidance. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi: 10.23638/DMTCS-19-2-7
Cité par Sources :