Asymptotic distribution of fixed points of pattern-avoiding involutions
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

For a variety of pattern-avoiding classes, we describe the limiting distribution for the number of fixed points for involutions chosen uniformly at random from that class. In particular we consider monotone patterns of arbitrary length as well as all patterns of length 3. For monotone patterns we utilize the connection with standard Young tableaux with at most $k$ rows and involutions avoiding a monotone pattern of length $k$. For every pattern of length 3 we give the bivariate generating function with respect to fixed points for the involutions that avoid that pattern, and where applicable apply tools from analytic combinatorics to extract information about the limiting distribution from the generating function. Many well-known distributions appear.
@article{DMTCS_2018_19_2_a1,
     author = {Miner, Samuel and Rizzolo, Douglas and Slivken, Erik},
     title = {Asymptotic distribution of fixed points of pattern-avoiding involutions},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-5/}
}
TY  - JOUR
AU  - Miner, Samuel
AU  - Rizzolo, Douglas
AU  - Slivken, Erik
TI  - Asymptotic distribution of fixed points of pattern-avoiding involutions
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-5/
DO  - 10.23638/DMTCS-19-2-5
LA  - en
ID  - DMTCS_2018_19_2_a1
ER  - 
%0 Journal Article
%A Miner, Samuel
%A Rizzolo, Douglas
%A Slivken, Erik
%T Asymptotic distribution of fixed points of pattern-avoiding involutions
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-5/
%R 10.23638/DMTCS-19-2-5
%G en
%F DMTCS_2018_19_2_a1
Miner, Samuel; Rizzolo, Douglas; Slivken, Erik. Asymptotic distribution of fixed points of pattern-avoiding involutions. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-5. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-5/

Cité par Sources :