Best and worst case permutations for random online domination of the path
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2
Voir la notice de l'article provenant de la source Episciences
We study a randomized algorithm for graph domination, by which, according to a uniformly chosen permutation, vertices are revealed and added to the dominating set if not already dominated. We determine the expected size of the dominating set produced by the algorithm for the path graph $P_n$ and use this to derive the expected size for some related families of graphs. We then provide a much-refined analysis of the worst and best cases of this algorithm on $P_n$ and enumerate the permutations for which the algorithm has the worst-possible performance and best-possible performance. The case of dominating the path graph has connections to previous work of Bouwer and Star, and of Gessel on greedily coloring the path.
@article{DMTCS_2018_19_2_a2,
author = {Coscia, Christopher and DeWitt, Jonathan and Yang, Fan and Zhang, Yiguang},
title = {Best and worst case permutations for random online domination of the path},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2017-2018},
doi = {10.23638/DMTCS-19-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-2/}
}
TY - JOUR AU - Coscia, Christopher AU - DeWitt, Jonathan AU - Yang, Fan AU - Zhang, Yiguang TI - Best and worst case permutations for random online domination of the path JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-2/ DO - 10.23638/DMTCS-19-2-2 LA - en ID - DMTCS_2018_19_2_a2 ER -
%0 Journal Article %A Coscia, Christopher %A DeWitt, Jonathan %A Yang, Fan %A Zhang, Yiguang %T Best and worst case permutations for random online domination of the path %J Discrete mathematics & theoretical computer science %D 2017-2018 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-2/ %R 10.23638/DMTCS-19-2-2 %G en %F DMTCS_2018_19_2_a2
Coscia, Christopher; DeWitt, Jonathan; Yang, Fan; Zhang, Yiguang. Best and worst case permutations for random online domination of the path. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi: 10.23638/DMTCS-19-2-2
Cité par Sources :