Quadrant marked mesh patterns in 123-avoiding permutations
Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

Given a permutation $\sigma = \sigma_1 \ldots \sigma_n$ in the symmetric group $\mathcal{S}_{n}$, we say that $\sigma_i$ matches the quadrant marked mesh pattern $\mathrm{MMP}(a,b,c,d)$ in $\sigma$ if there are at least $a$ points to the right of $\sigma_i$ in $\sigma$ which are greater than $\sigma_i$, at least $b$ points to the left of $\sigma_i$ in $\sigma$ which are greater than $\sigma_i$, at least $c$ points to the left of $\sigma_i$ in $\sigma$ which are smaller than $\sigma_i$, and at least $d$ points to the right of $\sigma_i$ in $\sigma$ which are smaller than $\sigma_i$. Kitaev, Remmel, and Tiefenbruck systematically studied the distribution of the number of matches of $\mathrm{MMP}(a,b,c,d)$ in 132-avoiding permutations. The operation of reverse and complement on permutations allow one to translate their results to find the distribution of the number of $\mathrm{MMP}(a,b,c,d)$ matches in 231-avoiding, 213-avoiding, and 312-avoiding permutations. In this paper, we study the distribution of the number of matches of $\mathrm{MMP}(a,b,c,d)$ in 123-avoiding permutations. We provide explicit recurrence relations to enumerate our objects which can be used to give closed forms for the generating functions associated with such distributions. In many cases, we provide combinatorial explanations of the coefficients that appear in our generating functions.
@article{DMTCS_2018_19_2_a11,
     author = {Qiu, Dun and Remmel, Jeffrey B.},
     title = {Quadrant marked mesh patterns in 123-avoiding permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-2-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-12/}
}
TY  - JOUR
AU  - Qiu, Dun
AU  - Remmel, Jeffrey B.
TI  - Quadrant marked mesh patterns in 123-avoiding permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-12/
DO  - 10.23638/DMTCS-19-2-12
LA  - en
ID  - DMTCS_2018_19_2_a11
ER  - 
%0 Journal Article
%A Qiu, Dun
%A Remmel, Jeffrey B.
%T Quadrant marked mesh patterns in 123-avoiding permutations
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-12/
%R 10.23638/DMTCS-19-2-12
%G en
%F DMTCS_2018_19_2_a11
Qiu, Dun; Remmel, Jeffrey B. Quadrant marked mesh patterns in 123-avoiding permutations. Discrete mathematics & theoretical computer science, Permutation Patterns 2016, Tome 19 (2017-2018) no. 2. doi : 10.23638/DMTCS-19-2-12. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-2-12/

Cité par Sources :