Evaluations of series of the $q$-Watson, $q$-Dixon, and $q$-Whipple type
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1.

Voir la notice de l'article provenant de la source Episciences

Using $q$-series identities and series rearrangement, we establish several extensions of $q$-Watson formulas with two extra integer parameters. Then they and Sears' transformation formula are utilized to derive some generalizations of $q$-Dixon formulas and $q$-Whipple formulas with two extra integer parameters. As special cases of these results, many interesting evaluations of series of $q$-Watson,$q$-Dixon, and $q$-Whipple type are displayed.
@article{DMTCS_2017_19_1_a18,
     author = {Wei, Chuanan and Wang, Xiaoxia},
     title = {Evaluations of series of the $q${-Watson,} $q${-Dixon,} and $q${-Whipple} type},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-1-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-19/}
}
TY  - JOUR
AU  - Wei, Chuanan
AU  - Wang, Xiaoxia
TI  - Evaluations of series of the $q$-Watson, $q$-Dixon, and $q$-Whipple type
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-19/
DO  - 10.23638/DMTCS-19-1-19
LA  - en
ID  - DMTCS_2017_19_1_a18
ER  - 
%0 Journal Article
%A Wei, Chuanan
%A Wang, Xiaoxia
%T Evaluations of series of the $q$-Watson, $q$-Dixon, and $q$-Whipple type
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-19/
%R 10.23638/DMTCS-19-1-19
%G en
%F DMTCS_2017_19_1_a18
Wei, Chuanan; Wang, Xiaoxia. Evaluations of series of the $q$-Watson, $q$-Dixon, and $q$-Whipple type. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 1. doi : 10.23638/DMTCS-19-1-19. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-1-19/

Cité par Sources :