The bilinear maximal functions map into \(L^p\) for \(2/3 p \leq 1\)
Annals of mathematics, Tome 151 (2000) no. 1
DOI : 10.2307/121111
Mots-clés : bilinear maximal functions, bisublinear maximal operators, model sums, 47G10, 46E30
@article{10_2307_121111,
     author = {Michael T. Lacey},
     title = {The bilinear maximal functions map into {\(L^p\)} for \(2/3  p \leq 1\)},
     journal = {Annals of mathematics},
     year = {2000},
     volume = {151},
     number = {1},
     doi = {10.2307/121111},
     zbl = {0967.47031},
     url = {http://geodesic.mathdoc.fr/articles/10.2307/121111/}
}
TY  - JOUR
AU  - Michael T. Lacey
TI  - The bilinear maximal functions map into \(L^p\) for \(2/3  p \leq 1\)
JO  - Annals of mathematics
PY  - 2000
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.2307/121111/
DO  - 10.2307/121111
ID  - 10_2307_121111
ER  - 
%0 Journal Article
%A Michael T. Lacey
%T The bilinear maximal functions map into \(L^p\) for \(2/3  p \leq 1\)
%J Annals of mathematics
%D 2000
%V 151
%N 1
%U http://geodesic.mathdoc.fr/articles/10.2307/121111/
%R 10.2307/121111
%F 10_2307_121111
Michael T. Lacey. The bilinear maximal functions map into \(L^p\) for \(2/3  p \leq 1\). Annals of mathematics, Tome 151 (2000) no. 1. doi: 10.2307/121111

Cité par Sources :