Decompositions of $2\times 2$ Matrices Over Local Rings
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 287 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An element $a$ of a ring $R$ is called perfectly clean if there exists an idempotent $e\in\comm^2(a)$ such that $a-e\in U(R)$. A ring $R$ is perfectly clean in case every element in $R$ is perfectly clean. In this paper, we completely determine when every $2\times 2$ matrix and triangular matrix over local rings are perfectly clean. These give more explicit characterizations of strongly clean matrices over local rings. We also obtain several criteria for a triangular matrix to be perfectly J-clean. For instance, it is proved that for a commutative local ring $R$, every triangular matrix is perfectly J-clean in $T_n(R)$ if and only if $R$ is strongly J-clean.
DOI : 10.2298/PIM1614287C
Classification : 16S50, 16S70, 16U99
Keywords: perfectly clean ring, perfectly J-clean ring, quasipolar ring, matrix, triangular matrix
@article{10_2298_PIM1614287C,
     author = {Huanyin Chen and Sait Halicioglu and Handan Kose},
     title = {Decompositions of $2\times 2$ {Matrices} {Over} {Local} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {287 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614287C},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/}
}
TY  - JOUR
AU  - Huanyin Chen
AU  - Sait Halicioglu
AU  - Handan Kose
TI  - Decompositions of $2\times 2$ Matrices Over Local Rings
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 287 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/
DO  - 10.2298/PIM1614287C
LA  - en
ID  - 10_2298_PIM1614287C
ER  - 
%0 Journal Article
%A Huanyin Chen
%A Sait Halicioglu
%A Handan Kose
%T Decompositions of $2\times 2$ Matrices Over Local Rings
%J Publications de l'Institut Mathématique
%D 2016
%P 287 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/
%R 10.2298/PIM1614287C
%G en
%F 10_2298_PIM1614287C
Huanyin Chen; Sait Halicioglu; Handan Kose. Decompositions of $2\times 2$ Matrices Over Local Rings. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 287 . doi : 10.2298/PIM1614287C. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/

Cité par Sources :