Decompositions of $2\times 2$ Matrices Over Local Rings
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 287
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An element $a$ of a ring $R$ is called perfectly clean if there exists an idempotent $e\in\comm^2(a)$ such that $a-e\in U(R)$. A ring $R$ is perfectly clean in case every element in $R$ is perfectly clean. In this paper, we completely determine when every $2\times 2$ matrix and triangular matrix over local rings are perfectly clean. These give more explicit characterizations of strongly clean matrices over local rings. We also obtain several criteria for a triangular matrix to be perfectly J-clean. For instance, it is proved that for a commutative local ring $R$, every triangular matrix is perfectly J-clean in $T_n(R)$ if and only if $R$ is strongly J-clean.
Classification :
16S50, 16S70, 16U99
Keywords: perfectly clean ring, perfectly J-clean ring, quasipolar ring, matrix, triangular matrix
Keywords: perfectly clean ring, perfectly J-clean ring, quasipolar ring, matrix, triangular matrix
@article{10_2298_PIM1614287C,
author = {Huanyin Chen and Sait Halicioglu and Handan Kose},
title = {Decompositions of $2\times 2$ {Matrices} {Over} {Local} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {287 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614287C},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/}
}
TY - JOUR AU - Huanyin Chen AU - Sait Halicioglu AU - Handan Kose TI - Decompositions of $2\times 2$ Matrices Over Local Rings JO - Publications de l'Institut Mathématique PY - 2016 SP - 287 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/ DO - 10.2298/PIM1614287C LA - en ID - 10_2298_PIM1614287C ER -
%0 Journal Article %A Huanyin Chen %A Sait Halicioglu %A Handan Kose %T Decompositions of $2\times 2$ Matrices Over Local Rings %J Publications de l'Institut Mathématique %D 2016 %P 287 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614287C/ %R 10.2298/PIM1614287C %G en %F 10_2298_PIM1614287C
Huanyin Chen; Sait Halicioglu; Handan Kose. Decompositions of $2\times 2$ Matrices Over Local Rings. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 287 . doi: 10.2298/PIM1614287C
Cité par Sources :