Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 279
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\mathbb{F}_q$ be the finite field with $q$ elements and $\beta$ Salem series in $ \mathbb{F}_q((X^{-1}))$. It is proved in \cite{K} that, in this case, all elements in $\mathbb{F}_q(X,\beta)$ have purely periodic $\beta$-expansion. We characterize the formal power series $f$ in $\mathbb{F}_q(X,\beta)$ with purely periodic $\beta$-expansions by the conjugate vector $\widetilde{f}$ when $\beta$ is a cubic unit. No similar results exist in the real case.
Classification :
11R06, 37B50
Keywords: formal power series, finite fields, $\beta$-expansion, Salem element
Keywords: formal power series, finite fields, $\beta$-expansion, Salem element
@article{10_2298_PIM1614279M,
author = {Fa{\"\i}za Mahjoub},
title = {Purely {Periodic} $\beta$-expansions in {Cubic} {Salem} {Base} in $\mathbb{F}_q((X^{-1}))$},
journal = {Publications de l'Institut Math\'ematique},
pages = {279 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614279M},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/}
}
TY - JOUR
AU - Faïza Mahjoub
TI - Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$
JO - Publications de l'Institut Mathématique
PY - 2016
SP - 279
VL - _N_S_100
IS - 114
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/
DO - 10.2298/PIM1614279M
LA - en
ID - 10_2298_PIM1614279M
ER -
%0 Journal Article
%A Faïza Mahjoub
%T Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$
%J Publications de l'Institut Mathématique
%D 2016
%P 279
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/
%R 10.2298/PIM1614279M
%G en
%F 10_2298_PIM1614279M
Faïza Mahjoub. Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 279 . doi: 10.2298/PIM1614279M
Cité par Sources :