Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{10_2298_PIM1614279M, author = {Fa{\"\i}za Mahjoub}, title = {Purely {Periodic} $\beta$-expansions in {Cubic} {Salem} {Base} in $\mathbb{F}_q((X^{-1}))$}, journal = {Publications de l'Institut Math\'ematique}, pages = {279 }, publisher = {mathdoc}, volume = {_N_S_100}, number = {114}, year = {2016}, doi = {10.2298/PIM1614279M}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/} }
TY - JOUR AU - Faïza Mahjoub TI - Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$ JO - Publications de l'Institut Mathématique PY - 2016 SP - 279 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/ DO - 10.2298/PIM1614279M LA - en ID - 10_2298_PIM1614279M ER -
%0 Journal Article %A Faïza Mahjoub %T Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$ %J Publications de l'Institut Mathématique %D 2016 %P 279 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/ %R 10.2298/PIM1614279M %G en %F 10_2298_PIM1614279M
Faïza Mahjoub. Purely Periodic $\beta$-expansions in Cubic Salem Base in $\mathbb{F}_q((X^{-1}))$. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 279 . doi : 10.2298/PIM1614279M. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614279M/
Cité par Sources :