Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 271 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate the existence of infinitely many weak solutions to some elliptic problems involving the $p$-Laplacian in $\Bbb R^N$ by using variational method and critical point theory.
DOI : 10.2298/PIM1614271K
Classification : 35J20
Keywords: $p$-Laplace operator, variational methods, critical point theory
@article{10_2298_PIM1614271K,
     author = {Mehdi Khodabakhshi and Abdolmohammad Aminpour and Mohamad Reza Heidari Tavani},
     title = {Infinitely {Many} {Weak} {Solutions} for {Some} {Elliptic} {Problems} in $R^N$},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {271 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614271K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/}
}
TY  - JOUR
AU  - Mehdi Khodabakhshi
AU  - Abdolmohammad Aminpour
AU  - Mohamad Reza Heidari Tavani
TI  - Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 271 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/
DO  - 10.2298/PIM1614271K
LA  - en
ID  - 10_2298_PIM1614271K
ER  - 
%0 Journal Article
%A Mehdi Khodabakhshi
%A Abdolmohammad Aminpour
%A Mohamad Reza Heidari Tavani
%T Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$
%J Publications de l'Institut Mathématique
%D 2016
%P 271 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/
%R 10.2298/PIM1614271K
%G en
%F 10_2298_PIM1614271K
Mehdi Khodabakhshi; Abdolmohammad Aminpour; Mohamad Reza Heidari Tavani. Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 271 . doi : 10.2298/PIM1614271K. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/

Cité par Sources :