Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 271
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the existence of infinitely many weak solutions to some elliptic problems involving the $p$-Laplacian in $\Bbb R^N$ by using variational method and critical point theory.
Classification :
35J20
Keywords: $p$-Laplace operator, variational methods, critical point theory
Keywords: $p$-Laplace operator, variational methods, critical point theory
@article{10_2298_PIM1614271K,
author = {Mehdi Khodabakhshi and Abdolmohammad Aminpour and Mohamad Reza Heidari Tavani},
title = {Infinitely {Many} {Weak} {Solutions} for {Some} {Elliptic} {Problems} in $R^N$},
journal = {Publications de l'Institut Math\'ematique},
pages = {271 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614271K},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/}
}
TY - JOUR AU - Mehdi Khodabakhshi AU - Abdolmohammad Aminpour AU - Mohamad Reza Heidari Tavani TI - Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$ JO - Publications de l'Institut Mathématique PY - 2016 SP - 271 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/ DO - 10.2298/PIM1614271K LA - en ID - 10_2298_PIM1614271K ER -
%0 Journal Article %A Mehdi Khodabakhshi %A Abdolmohammad Aminpour %A Mohamad Reza Heidari Tavani %T Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$ %J Publications de l'Institut Mathématique %D 2016 %P 271 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614271K/ %R 10.2298/PIM1614271K %G en %F 10_2298_PIM1614271K
Mehdi Khodabakhshi; Abdolmohammad Aminpour; Mohamad Reza Heidari Tavani. Infinitely Many Weak Solutions for Some Elliptic Problems in $R^N$. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 271 . doi: 10.2298/PIM1614271K
Cité par Sources :