Pellans Sequence and Its Diophantine Triples
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 259
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce a novel fourth order linear recurrence sequence $\{S_n\}$ using the two periodic binary recurrence. We call it ``pellans sequence'' and then we solve the system $ ab+1=S_x, \quad ac+1=S_y \quad bc+1=S_z $ where $a$ are positive integers. Therefore, we extend the order of recurrence sequence for this variant diophantine equations by means of pellans sequence.
Classification :
11D09 11B39
Keywords: Diophantine triples, pell numbers, balancing numbers, pellans sequence
Keywords: Diophantine triples, pell numbers, balancing numbers, pellans sequence
@article{10_2298_PIM1614259I,
author = {Nurettin Irmak and Murat Alp},
title = {Pellans {Sequence} and {Its} {Diophantine} {Triples}},
journal = {Publications de l'Institut Math\'ematique},
pages = {259 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614259I},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614259I/}
}
TY - JOUR AU - Nurettin Irmak AU - Murat Alp TI - Pellans Sequence and Its Diophantine Triples JO - Publications de l'Institut Mathématique PY - 2016 SP - 259 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614259I/ DO - 10.2298/PIM1614259I LA - en ID - 10_2298_PIM1614259I ER -
Nurettin Irmak; Murat Alp. Pellans Sequence and Its Diophantine Triples. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 259 . doi: 10.2298/PIM1614259I
Cité par Sources :