Weighted Boundedness for Commutators of Parameterized Littlewood--Paley Operators and Area Integrals
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 183
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We establish the boundedness for commutators of parameterized Littlewood--Paley operators and area integrals on weighted Lebesgue spaces $L^p(\omega)$ when $1$, where the kernel satisfies certain logarithmic type Lipschitz condition. Moreover, the weighted endpoint estimates when $p=1$ are also obtained.
Classification :
42B20 42B25
Keywords: parameterized Littlewood-Paley operator, parameterized area integral, commutator, BMO
Keywords: parameterized Littlewood-Paley operator, parameterized area integral, commutator, BMO
@article{10_2298_PIM1614183L,
author = {Yan Lin and Xiao Xuan},
title = {Weighted {Boundedness} for {Commutators} of {Parameterized} {Littlewood--Paley} {Operators} and {Area} {Integrals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {183 },
year = {2016},
volume = {_N_S_100},
number = {114},
doi = {10.2298/PIM1614183L},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614183L/}
}
TY - JOUR AU - Yan Lin AU - Xiao Xuan TI - Weighted Boundedness for Commutators of Parameterized Littlewood--Paley Operators and Area Integrals JO - Publications de l'Institut Mathématique PY - 2016 SP - 183 VL - _N_S_100 IS - 114 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614183L/ DO - 10.2298/PIM1614183L LA - en ID - 10_2298_PIM1614183L ER -
%0 Journal Article %A Yan Lin %A Xiao Xuan %T Weighted Boundedness for Commutators of Parameterized Littlewood--Paley Operators and Area Integrals %J Publications de l'Institut Mathématique %D 2016 %P 183 %V _N_S_100 %N 114 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614183L/ %R 10.2298/PIM1614183L %G en %F 10_2298_PIM1614183L
Yan Lin; Xiao Xuan. Weighted Boundedness for Commutators of Parameterized Littlewood--Paley Operators and Area Integrals. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 183 . doi: 10.2298/PIM1614183L
Cité par Sources :