Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 131 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An universality theorem on the approximation of analytic functions by shifts $\zeta(s+i\tau,F)$ of zeta-functions of normalized Hecke-eigen forms $F$, where $\tau$ takes values from the set $\{k^\alpha h:k=0,1,2,\dots\}$ with fixed $0\alpha1$ and $h>0$, is obtained.
DOI : 10.2298/PIM1614131L
Classification : 11M41
Keywords: joint universality, linear independence, zeta-function of normalized Hecke-eigen form, weak convergence
@article{10_2298_PIM1614131L,
     author = {Antanas Laurin cikas},
     title = {Uniform {Distribution} {Modulo} 1 and the {Universality} of {Zeta-Functions} of {Certain} {Cusp} {Forms}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {131 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614131L},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/}
}
TY  - JOUR
AU  - Antanas Laurin cikas
TI  - Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 131 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/
DO  - 10.2298/PIM1614131L
LA  - en
ID  - 10_2298_PIM1614131L
ER  - 
%0 Journal Article
%A Antanas Laurin cikas
%T Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms
%J Publications de l'Institut Mathématique
%D 2016
%P 131 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/
%R 10.2298/PIM1614131L
%G en
%F 10_2298_PIM1614131L
Antanas Laurin cikas. Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 131 . doi : 10.2298/PIM1614131L. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/

Cité par Sources :