Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 131
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An universality theorem on the approximation of analytic functions by shifts $\zeta(s+i\tau,F)$ of zeta-functions of normalized Hecke-eigen forms $F$, where $\tau$ takes values from the set $\{k^\alpha h:k=0,1,2,\dots\}$ with fixed $0\alpha1$ and $h>0$, is obtained.
Classification :
11M41
Keywords: joint universality, linear independence, zeta-function of normalized Hecke-eigen form, weak convergence
Keywords: joint universality, linear independence, zeta-function of normalized Hecke-eigen form, weak convergence
@article{10_2298_PIM1614131L,
author = {Antanas Laurin cikas},
title = {Uniform {Distribution} {Modulo} 1 and the {Universality} of {Zeta-Functions} of {Certain} {Cusp} {Forms}},
journal = {Publications de l'Institut Math\'ematique},
pages = {131 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614131L},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/}
}
TY - JOUR AU - Antanas Laurin cikas TI - Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms JO - Publications de l'Institut Mathématique PY - 2016 SP - 131 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/ DO - 10.2298/PIM1614131L LA - en ID - 10_2298_PIM1614131L ER -
%0 Journal Article %A Antanas Laurin cikas %T Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms %J Publications de l'Institut Mathématique %D 2016 %P 131 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614131L/ %R 10.2298/PIM1614131L %G en %F 10_2298_PIM1614131L
Antanas Laurin cikas. Uniform Distribution Modulo 1 and the Universality of Zeta-Functions of Certain Cusp Forms. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 131 . doi: 10.2298/PIM1614131L
Cité par Sources :