On Distinct Residues of Factorials
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the existence of primes $p>5$ for which the residues of $2!$, $3!$, \dots, $(p-1)!$ modulo $p$ are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than $10^{11}$.
Classification :
11B83 11K31
Keywords: left factorial, factorial, prime numbers
Keywords: left factorial, factorial, prime numbers
@article{10_2298_PIM1614101A,
author = {Vladica Andreji\'c and Milo\v{s} Tatarevi\'c},
title = {On {Distinct} {Residues} of {Factorials}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614101A},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/}
}
TY - JOUR AU - Vladica Andrejić AU - Miloš Tatarević TI - On Distinct Residues of Factorials JO - Publications de l'Institut Mathématique PY - 2016 SP - 101 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/ DO - 10.2298/PIM1614101A LA - en ID - 10_2298_PIM1614101A ER -
Vladica Andrejić; Miloš Tatarević. On Distinct Residues of Factorials. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101 . doi: 10.2298/PIM1614101A
Cité par Sources :