On Distinct Residues of Factorials
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate the existence of primes $p>5$ for which the residues of $2!$, $3!$, \dots, $(p-1)!$ modulo $p$ are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than $10^{11}$.
DOI : 10.2298/PIM1614101A
Classification : 11B83 11K31
Keywords: left factorial, factorial, prime numbers
@article{10_2298_PIM1614101A,
     author = {Vladica Andreji\'c and Milo\v{s} Tatarevi\'c},
     title = {On {Distinct} {Residues} of {Factorials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614101A},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/}
}
TY  - JOUR
AU  - Vladica Andrejić
AU  - Miloš Tatarević
TI  - On Distinct Residues of Factorials
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 101 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/
DO  - 10.2298/PIM1614101A
LA  - en
ID  - 10_2298_PIM1614101A
ER  - 
%0 Journal Article
%A Vladica Andrejić
%A Miloš Tatarević
%T On Distinct Residues of Factorials
%J Publications de l'Institut Mathématique
%D 2016
%P 101 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/
%R 10.2298/PIM1614101A
%G en
%F 10_2298_PIM1614101A
Vladica Andrejić; Miloš Tatarević. On Distinct Residues of Factorials. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101 . doi: 10.2298/PIM1614101A

Cité par Sources :