On Distinct Residues of Factorials
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate the existence of primes $p>5$ for which the residues of $2!$, $3!$, \dots, $(p-1)!$ modulo $p$ are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than $10^{11}$.
DOI : 10.2298/PIM1614101A
Classification : 11B83 11K31
Keywords: left factorial, factorial, prime numbers
@article{10_2298_PIM1614101A,
     author = {Vladica Andreji\'c and Milo\v{s} Tatarevi\'c},
     title = {On {Distinct} {Residues} of {Factorials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614101A},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/}
}
TY  - JOUR
AU  - Vladica Andrejić
AU  - Miloš Tatarević
TI  - On Distinct Residues of Factorials
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 101 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/
DO  - 10.2298/PIM1614101A
LA  - en
ID  - 10_2298_PIM1614101A
ER  - 
%0 Journal Article
%A Vladica Andrejić
%A Miloš Tatarević
%T On Distinct Residues of Factorials
%J Publications de l'Institut Mathématique
%D 2016
%P 101 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/
%R 10.2298/PIM1614101A
%G en
%F 10_2298_PIM1614101A
Vladica Andrejić; Miloš Tatarević. On Distinct Residues of Factorials. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101 . doi : 10.2298/PIM1614101A. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/

Cité par Sources :