On Distinct Residues of Factorials
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the existence of primes $p>5$ for which the residues of $2!$, $3!$, \dots, $(p-1)!$ modulo $p$ are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such primes less than $10^{11}$.
Classification :
11B83 11K31
Keywords: left factorial, factorial, prime numbers
Keywords: left factorial, factorial, prime numbers
@article{10_2298_PIM1614101A,
author = {Vladica Andreji\'c and Milo\v{s} Tatarevi\'c},
title = {On {Distinct} {Residues} of {Factorials}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
year = {2016},
volume = {_N_S_100},
number = {114},
doi = {10.2298/PIM1614101A},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/}
}
TY - JOUR AU - Vladica Andrejić AU - Miloš Tatarević TI - On Distinct Residues of Factorials JO - Publications de l'Institut Mathématique PY - 2016 SP - 101 VL - _N_S_100 IS - 114 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614101A/ DO - 10.2298/PIM1614101A LA - en ID - 10_2298_PIM1614101A ER -
Vladica Andrejić; Miloš Tatarević. On Distinct Residues of Factorials. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 101 . doi: 10.2298/PIM1614101A
Cité par Sources :