Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate, in the setting of sequentially complete locally convex spaces, degenerate multi-term fractional differential equations with Caputo derivatives. The obtained theoretical results are illustrated with some examples.
DOI : 10.2298/PIM1614049K
Classification : 35R11;45D05 45N05;47D99
Keywords: abstract multi-term fractional differential equations, Caputo fractional derivatives, degenerate $(a;k)$-regularized $C$-resolvent families, well-posedness, locally convex spaces
@article{10_2298_PIM1614049K,
     author = {Marko Kosti\'c},
     title = {Degenerate {Multi-term} {Fractional} {Differential} {Equations} in {Locally} {Convex} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614049K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/}
}
TY  - JOUR
AU  - Marko Kostić
TI  - Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 49 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/
DO  - 10.2298/PIM1614049K
LA  - en
ID  - 10_2298_PIM1614049K
ER  - 
%0 Journal Article
%A Marko Kostić
%T Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces
%J Publications de l'Institut Mathématique
%D 2016
%P 49 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/
%R 10.2298/PIM1614049K
%G en
%F 10_2298_PIM1614049K
Marko Kostić. Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49 . doi : 10.2298/PIM1614049K. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/

Cité par Sources :