Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate, in the setting of sequentially complete locally convex spaces, degenerate multi-term fractional differential equations with Caputo derivatives. The obtained theoretical results are illustrated with some examples.
Classification :
35R11;45D05 45N05;47D99
Keywords: abstract multi-term fractional differential equations, Caputo fractional derivatives, degenerate $(a;k)$-regularized $C$-resolvent families, well-posedness, locally convex spaces
Keywords: abstract multi-term fractional differential equations, Caputo fractional derivatives, degenerate $(a;k)$-regularized $C$-resolvent families, well-posedness, locally convex spaces
@article{10_2298_PIM1614049K,
author = {Marko Kosti\'c},
title = {Degenerate {Multi-term} {Fractional} {Differential} {Equations} in {Locally} {Convex} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
year = {2016},
volume = {_N_S_100},
number = {114},
doi = {10.2298/PIM1614049K},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/}
}
TY - JOUR AU - Marko Kostić TI - Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces JO - Publications de l'Institut Mathématique PY - 2016 SP - 49 VL - _N_S_100 IS - 114 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/ DO - 10.2298/PIM1614049K LA - en ID - 10_2298_PIM1614049K ER -
%0 Journal Article %A Marko Kostić %T Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces %J Publications de l'Institut Mathématique %D 2016 %P 49 %V _N_S_100 %N 114 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/ %R 10.2298/PIM1614049K %G en %F 10_2298_PIM1614049K
Marko Kostić. Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49 . doi: 10.2298/PIM1614049K
Cité par Sources :