Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate, in the setting of sequentially complete locally convex spaces, degenerate multi-term fractional differential equations with Caputo derivatives. The obtained theoretical results are illustrated with some examples.
Classification :
35R11;45D05 45N05;47D99
Keywords: abstract multi-term fractional differential equations, Caputo fractional derivatives, degenerate $(a;k)$-regularized $C$-resolvent families, well-posedness, locally convex spaces
Keywords: abstract multi-term fractional differential equations, Caputo fractional derivatives, degenerate $(a;k)$-regularized $C$-resolvent families, well-posedness, locally convex spaces
@article{10_2298_PIM1614049K,
author = {Marko Kosti\'c},
title = {Degenerate {Multi-term} {Fractional} {Differential} {Equations} in {Locally} {Convex} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614049K},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/}
}
TY - JOUR AU - Marko Kostić TI - Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces JO - Publications de l'Institut Mathématique PY - 2016 SP - 49 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/ DO - 10.2298/PIM1614049K LA - en ID - 10_2298_PIM1614049K ER -
%0 Journal Article %A Marko Kostić %T Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces %J Publications de l'Institut Mathématique %D 2016 %P 49 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614049K/ %R 10.2298/PIM1614049K %G en %F 10_2298_PIM1614049K
Marko Kostić. Degenerate Multi-term Fractional Differential Equations in Locally Convex Spaces. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 49 . doi: 10.2298/PIM1614049K
Cité par Sources :