Logarithmic Bloch Space and Its Predual
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the space $\mathfrak B^1_{\log^\alpha}$, of analytic functions on the unit disk $\mathbb D$, defined by the requirement $\int_\mathbb D|f'(z)|\phi(|z|)\,dA(z)\infty$, where $\phi(r)=\log^\alpha(1/(1-r))$ and show that it is a predual of the ``$\log^\alpha$-Bloch'' space and the dual of the corresponding little Bloch space. We prove that a function $f(z)=\sum_{n=0}^\infty a_nz^n$ with $a_n\downarrow 0$ is in $\mathfrak B^1_{\log^\alpha}$ iff $\sum_{n=0}^\infty \log^\alpha(n+2)/(n+1)\infty$ and apply this to obtain a criterion for membership of the Libera transform of a function with positive coefficients in $\mathfrak B^1_{\log^\alpha}$. Some properties of the Cesàro and the Libera operator are considered as well.
Classification :
30D55
Keywords: Libera operator, Cesaro operator, Hardy spaces, logarithmic Bloch type spaces, predual
Keywords: Libera operator, Cesaro operator, Hardy spaces, logarithmic Bloch type spaces, predual
@article{10_2298_PIM1614001P,
author = {Miroslav Pavlovi\'c},
title = {Logarithmic {Bloch} {Space} and {Its} {Predual}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM1614001P},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/}
}
TY - JOUR AU - Miroslav Pavlović TI - Logarithmic Bloch Space and Its Predual JO - Publications de l'Institut Mathématique PY - 2016 SP - 1 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/ DO - 10.2298/PIM1614001P LA - en ID - 10_2298_PIM1614001P ER -
Miroslav Pavlović. Logarithmic Bloch Space and Its Predual. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 1 . doi: 10.2298/PIM1614001P
Cité par Sources :