Logarithmic Bloch Space and Its Predual
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider the space $\mathfrak B^1_{\log^\alpha}$, of analytic functions on the unit disk $\mathbb D$, defined by the requirement $\int_\mathbb D|f'(z)|\phi(|z|)\,dA(z)\infty$, where $\phi(r)=\log^\alpha(1/(1-r))$ and show that it is a predual of the ``$\log^\alpha$-Bloch'' space and the dual of the corresponding little Bloch space. We prove that a function $f(z)=\sum_{n=0}^\infty a_nz^n$ with $a_n\downarrow 0$ is in $\mathfrak B^1_{\log^\alpha}$ iff $\sum_{n=0}^\infty \log^\alpha(n+2)/(n+1)\infty$ and apply this to obtain a criterion for membership of the Libera transform of a function with positive coefficients in $\mathfrak B^1_{\log^\alpha}$. Some properties of the Cesàro and the Libera operator are considered as well.
DOI : 10.2298/PIM1614001P
Classification : 30D55
Keywords: Libera operator, Cesaro operator, Hardy spaces, logarithmic Bloch type spaces, predual
@article{10_2298_PIM1614001P,
     author = {Miroslav Pavlovi\'c},
     title = {Logarithmic {Bloch} {Space} and {Its} {Predual}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_100},
     number = {114},
     year = {2016},
     doi = {10.2298/PIM1614001P},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/}
}
TY  - JOUR
AU  - Miroslav Pavlović
TI  - Logarithmic Bloch Space and Its Predual
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 1 
VL  - _N_S_100
IS  - 114
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/
DO  - 10.2298/PIM1614001P
LA  - en
ID  - 10_2298_PIM1614001P
ER  - 
%0 Journal Article
%A Miroslav Pavlović
%T Logarithmic Bloch Space and Its Predual
%J Publications de l'Institut Mathématique
%D 2016
%P 1 
%V _N_S_100
%N 114
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/
%R 10.2298/PIM1614001P
%G en
%F 10_2298_PIM1614001P
Miroslav Pavlović. Logarithmic Bloch Space and Its Predual. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 1 . doi : 10.2298/PIM1614001P. http://geodesic.mathdoc.fr/articles/10.2298/PIM1614001P/

Cité par Sources :