On the Location of the Zeros of Certain Polynomials
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 287 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We extend Aziz and Mohammad's result that the zeros, of a polynomial $P(z)=\sum_{j=0}^na_jz^j$, $ta_j\geq a_{j-1}>0$, $j=2,3,\dots,n$ for certain $t$ (${}>0$), with moduli greater than $t(n-1)/n$ are simple, to polynomials with complex coefficients. Then we improve their result that the polynomial $P(z)$, of degree $n$, with complex coefficients, does not vanish in the disc \[ |z-a e^{ilpha}|/(2n);a>0,\max_{|z|=a}|P(z)|=|P(ae^{ilpha})|, \] for $r$ being the greatest positive root of the equation \[ x^n-2x^{n-1}+1=0, \] and finally obtained an upper bound, for moduli of all zeros of a polynomial, (better, in many cases, than those obtainable from many other known results).
DOI : 10.2298/PIM1613287B
Classification : 30C15 30C10
Keywords: simple zeros, zero free region, refinement, upper bound for moduli of all zeros
@article{10_2298_PIM1613287B,
     author = {S. D. Bairagi and Vinay Kumar Jain and T. K. Mishra and L. Saha},
     title = {On the {Location} of the {Zeros} of {Certain} {Polynomials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {287 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM1613287B},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613287B/}
}
TY  - JOUR
AU  - S. D. Bairagi
AU  - Vinay Kumar Jain
AU  - T. K. Mishra
AU  - L. Saha
TI  - On the Location of the Zeros of Certain Polynomials
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 287 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613287B/
DO  - 10.2298/PIM1613287B
LA  - en
ID  - 10_2298_PIM1613287B
ER  - 
%0 Journal Article
%A S. D. Bairagi
%A Vinay Kumar Jain
%A T. K. Mishra
%A L. Saha
%T On the Location of the Zeros of Certain Polynomials
%J Publications de l'Institut Mathématique
%D 2016
%P 287 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613287B/
%R 10.2298/PIM1613287B
%G en
%F 10_2298_PIM1613287B
S. D. Bairagi; Vinay Kumar Jain; T. K. Mishra; L. Saha. On the Location of the Zeros of Certain Polynomials. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 287 . doi : 10.2298/PIM1613287B. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613287B/

Cité par Sources :