On the Conjugates of Certain Algebraic Integers
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 281
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A well-known theorem, due to C.\,J. Smyth, asserts that two conjugates of a Pisot number, having the same modulus are necessary complex conjugates. We show that this result remains true for $K$-Pisot numbers, where $K$ is a real algebraic number field. Also, we prove that a $j$-Pisot number, where $j$ is a natural number, can not have more than $2j$ conjugates with the same modulus.
Classification :
11R06, 11R04, 12D10
Keywords: Pisot numbers, Salem numbers, special algebraic numbers
Keywords: Pisot numbers, Salem numbers, special algebraic numbers
@article{10_2298_PIM1613281Z,
author = {Toufik Za{\"\i}mi},
title = {On the {Conjugates} of {Certain} {Algebraic} {Integers}},
journal = {Publications de l'Institut Math\'ematique},
pages = {281 },
year = {2016},
volume = {_N_S_99},
number = {113},
doi = {10.2298/PIM1613281Z},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613281Z/}
}
Toufik Zaïmi. On the Conjugates of Certain Algebraic Integers. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 281 . doi: 10.2298/PIM1613281Z
Cité par Sources :