Identities With Squares of Binomial Coefficients: an Elementary and Explicit Approach
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 243 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In 2014, Slavik presented a recursive method to find closed forms for two kinds of sums involving squares of binomial coefficients. We give an elementary and explicit approach to compute these two kinds of sums. It is based on a triangle of numbers which is akin to the Stirling subset numbers.
DOI : 10.2298/PIM1613243K
Classification : 11B39
Keywords: binomial coefficients, squares, sums identities
@article{10_2298_PIM1613243K,
     author = {Emrah K{\i}l{\i}\c{c} and Helmut Prodinger},
     title = {Identities {With} {Squares} of {Binomial} {Coefficients:} an {Elementary} and {Explicit} {Approach}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {243 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM1613243K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613243K/}
}
TY  - JOUR
AU  - Emrah Kılıç
AU  - Helmut Prodinger
TI  - Identities With Squares of Binomial Coefficients: an Elementary and Explicit Approach
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 243 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613243K/
DO  - 10.2298/PIM1613243K
LA  - en
ID  - 10_2298_PIM1613243K
ER  - 
%0 Journal Article
%A Emrah Kılıç
%A Helmut Prodinger
%T Identities With Squares of Binomial Coefficients: an Elementary and Explicit Approach
%J Publications de l'Institut Mathématique
%D 2016
%P 243 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613243K/
%R 10.2298/PIM1613243K
%G en
%F 10_2298_PIM1613243K
Emrah Kılıç; Helmut Prodinger. Identities With Squares of Binomial Coefficients: an Elementary and Explicit Approach. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 243 . doi : 10.2298/PIM1613243K. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613243K/

Cité par Sources :