Vertex Decomposable Graph
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 203 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a simple graph on the vertex set $V(G)$ and $S=\{x_{11},\ldots,x_{n1}\}$ a subset of $V(G)$. Let $m_1,\ldots,m_n\geq 2$ be integers and $G_1,\ldots,G_n$ connected simple graphs on the vertex sets $V(G_i)=\{x_{i1},\ldots,x_{im_i}\}$ for $i=1,\ldots,n$. The graph $G(G_1,\ldots,G_n)$ is obtained from $G$ by attaching $G_i$ to $G$ at the vertex $x_{i1}$ for $i=1,\ldots,n$. We give a characterization of $G(G_1,\ldots,G_n)$ for being vertex decomposable. This generalizes a result due to Mousivand, Seyed Fakhari, and Yassemi.
DOI : 10.2298/PIM1613203H
Classification : 13F55, 05E40 05C70, 05C38
Keywords: vertex decomposable, Cohen--Macaulay
@article{10_2298_PIM1613203H,
     author = {N. Hajisharifi and S. Yassemi},
     title = {Vertex {Decomposable} {Graph}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {203 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM1613203H},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/}
}
TY  - JOUR
AU  - N. Hajisharifi
AU  - S. Yassemi
TI  - Vertex Decomposable Graph
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 203 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/
DO  - 10.2298/PIM1613203H
LA  - en
ID  - 10_2298_PIM1613203H
ER  - 
%0 Journal Article
%A N. Hajisharifi
%A S. Yassemi
%T Vertex Decomposable Graph
%J Publications de l'Institut Mathématique
%D 2016
%P 203 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/
%R 10.2298/PIM1613203H
%G en
%F 10_2298_PIM1613203H
N. Hajisharifi; S. Yassemi. Vertex Decomposable Graph. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 203 . doi : 10.2298/PIM1613203H. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/

Cité par Sources :