Vertex Decomposable Graph
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 203
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a simple graph on the vertex set $V(G)$ and $S=\{x_{11},\ldots,x_{n1}\}$ a subset of $V(G)$. Let $m_1,\ldots,m_n\geq 2$ be integers and $G_1,\ldots,G_n$ connected simple graphs on the vertex sets $V(G_i)=\{x_{i1},\ldots,x_{im_i}\}$ for $i=1,\ldots,n$. The graph $G(G_1,\ldots,G_n)$ is obtained from $G$ by attaching $G_i$ to $G$ at the vertex $x_{i1}$ for $i=1,\ldots,n$. We give a characterization of $G(G_1,\ldots,G_n)$ for being vertex decomposable. This generalizes a result due to Mousivand, Seyed Fakhari, and Yassemi.
Classification :
13F55, 05E40 05C70, 05C38
Keywords: vertex decomposable, Cohen--Macaulay
Keywords: vertex decomposable, Cohen--Macaulay
@article{10_2298_PIM1613203H,
author = {N. Hajisharifi and S. Yassemi},
title = {Vertex {Decomposable} {Graph}},
journal = {Publications de l'Institut Math\'ematique},
pages = {203 },
publisher = {mathdoc},
volume = {_N_S_99},
number = {113},
year = {2016},
doi = {10.2298/PIM1613203H},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/}
}
TY - JOUR AU - N. Hajisharifi AU - S. Yassemi TI - Vertex Decomposable Graph JO - Publications de l'Institut Mathématique PY - 2016 SP - 203 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613203H/ DO - 10.2298/PIM1613203H LA - en ID - 10_2298_PIM1613203H ER -
N. Hajisharifi; S. Yassemi. Vertex Decomposable Graph. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 203 . doi: 10.2298/PIM1613203H
Cité par Sources :