Umbral Interpolation
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 165 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A general linear interpolation problem is posed and solved. This problem is called \emph{umbral interpolation problem} because its solution can be expressed by a basis of Sheffer polynomials. The truncation error and its bounds are considered. Some examples are discussed, in particular generalizations of Abel--Gontscharoff and central interpolation are studied. Numerical examples are given too.
DOI : 10.2298/PIM1613165C
Classification : 11B83, 65F40
Keywords: Umbral calculus, Sheffer polynomials, interpolation
@article{10_2298_PIM1613165C,
     author = {Francesco Aldo Costabile and Elisabetta Longo},
     title = {Umbral {Interpolation}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {165 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM1613165C},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613165C/}
}
TY  - JOUR
AU  - Francesco Aldo Costabile
AU  - Elisabetta Longo
TI  - Umbral Interpolation
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 165 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613165C/
DO  - 10.2298/PIM1613165C
LA  - en
ID  - 10_2298_PIM1613165C
ER  - 
%0 Journal Article
%A Francesco Aldo Costabile
%A Elisabetta Longo
%T Umbral Interpolation
%J Publications de l'Institut Mathématique
%D 2016
%P 165 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613165C/
%R 10.2298/PIM1613165C
%G en
%F 10_2298_PIM1613165C
Francesco Aldo Costabile; Elisabetta Longo. Umbral Interpolation. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 165 . doi : 10.2298/PIM1613165C. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613165C/

Cité par Sources :