Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 155 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We found order estimates for the upper bounds of the deviations of analogue of Zygmund's sums on the classes of $(\psi;\beta)$-differentiable functions in the metrics of generalized Lebesgue spaces with variable exponent.
DOI : 10.2298/PIM1613155C
Classification : 46E30, 42A10, 41A17, 41A20, 41A25
Keywords: Lebesgue spaces with variable exponent, analogue of Zygmund sums, $(\psi;\beta)$-derivative
@article{10_2298_PIM1613155C,
     author = {Stanislav Chaichenko},
     title = {Approximations of {Periodic} {Functions} by {Analogue} of {Zygmund} {Sums} in the {Spaces} $\boldsymbol{L^{p(\cdot)}}$},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {155 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM1613155C},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/}
}
TY  - JOUR
AU  - Stanislav Chaichenko
TI  - Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 155 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/
DO  - 10.2298/PIM1613155C
LA  - en
ID  - 10_2298_PIM1613155C
ER  - 
%0 Journal Article
%A Stanislav Chaichenko
%T Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$
%J Publications de l'Institut Mathématique
%D 2016
%P 155 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/
%R 10.2298/PIM1613155C
%G en
%F 10_2298_PIM1613155C
Stanislav Chaichenko. Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 155 . doi : 10.2298/PIM1613155C. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/

Cité par Sources :