Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{10_2298_PIM1613155C, author = {Stanislav Chaichenko}, title = {Approximations of {Periodic} {Functions} by {Analogue} of {Zygmund} {Sums} in the {Spaces} $\boldsymbol{L^{p(\cdot)}}$}, journal = {Publications de l'Institut Math\'ematique}, pages = {155 }, publisher = {mathdoc}, volume = {_N_S_99}, number = {113}, year = {2016}, doi = {10.2298/PIM1613155C}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/} }
TY - JOUR AU - Stanislav Chaichenko TI - Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$ JO - Publications de l'Institut Mathématique PY - 2016 SP - 155 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/ DO - 10.2298/PIM1613155C LA - en ID - 10_2298_PIM1613155C ER -
%0 Journal Article %A Stanislav Chaichenko %T Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$ %J Publications de l'Institut Mathématique %D 2016 %P 155 %V _N_S_99 %N 113 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/ %R 10.2298/PIM1613155C %G en %F 10_2298_PIM1613155C
Stanislav Chaichenko. Approximations of Periodic Functions by Analogue of Zygmund Sums in the Spaces $\boldsymbol{L^{p(\cdot)}}$. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 155 . doi : 10.2298/PIM1613155C. http://geodesic.mathdoc.fr/articles/10.2298/PIM1613155C/
Cité par Sources :