On Avakumović's Theorem for Generalized Thomas--Fermi Differential Equations
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 125
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For the generalized Thomas--Fermi differential equation \[ (|x'|^{lpha-1}x')'=q(t)|x|^{\beta-1}x, \] it is proved that if $1 \leq \alpha\beta$ and $q(t)$ is a regularly varying function of index $\mu$ with $\mu>-\alpha-1$, then all positive solutions that tend to zero as $t\to\infty$ are regularly varying functions of one and the same negative index $\rho$ and their asymptotic behavior at infinity is governed by the unique definite decay law. Further, an attempt is made to generalize this result to more general quasilinear differential equations of the form \[ (p(t)|x'|^{lpha-1}x')'=q(t)|x|^{\beta-1}x. \]
Classification :
34C11 26A12
Keywords: generalized Thomas--Fermi differential equation, Avakumović's theorem, positive solutions, asymptotic behavior, regularly varying functions
Keywords: generalized Thomas--Fermi differential equation, Avakumović's theorem, positive solutions, asymptotic behavior, regularly varying functions
@article{10_2298_PIM1613125J,
author = {Jaroslav Jaro\v{s} and Kusano Taka\^{s}i},
title = {On {Avakumovi\'c's} {Theorem} for {Generalized} {Thomas--Fermi} {Differential} {Equations}},
journal = {Publications de l'Institut Math\'ematique},
pages = {125 },
publisher = {mathdoc},
volume = {_N_S_99},
number = {113},
year = {2016},
doi = {10.2298/PIM1613125J},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1613125J/}
}
TY - JOUR AU - Jaroslav Jaroš AU - Kusano Takaŝi TI - On Avakumović's Theorem for Generalized Thomas--Fermi Differential Equations JO - Publications de l'Institut Mathématique PY - 2016 SP - 125 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1613125J/ DO - 10.2298/PIM1613125J LA - en ID - 10_2298_PIM1613125J ER -
%0 Journal Article %A Jaroslav Jaroš %A Kusano Takaŝi %T On Avakumović's Theorem for Generalized Thomas--Fermi Differential Equations %J Publications de l'Institut Mathématique %D 2016 %P 125 %V _N_S_99 %N 113 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1613125J/ %R 10.2298/PIM1613125J %G en %F 10_2298_PIM1613125J
Jaroslav Jaroš; Kusano Takaŝi. On Avakumović's Theorem for Generalized Thomas--Fermi Differential Equations. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 125 . doi: 10.2298/PIM1613125J
Cité par Sources :