Completeness Theorem for Continuous Functions and Product Class-topologies
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 119
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We introduce an infinitary logic $L_{\mathbb{A}}(O^n,C^n)_{n\in\omega$ which is an extension of $L_{\mathbb A}$ obtained by adding new quantifiers $O^n$ and $C^n$, for every $n\in\omega$. The corresponding models are topological class-spaces. An axiomatization is given and the completeness theorem is proved.
Classification :
03C70 03C80, 03B80
Keywords: infinitary logic, topological class-spaces, completeness
Keywords: infinitary logic, topological class-spaces, completeness
@article{10_2298_PIM160525001D,
author = {Radosav Djordjevi\'c and Vladimir Risti\'c and Neboj\v{s}a Ikodinovi\'c},
title = {Completeness {Theorem} for {Continuous} {Functions} and {Product} {Class-topologies}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM160525001D},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM160525001D/}
}
TY - JOUR AU - Radosav Djordjević AU - Vladimir Ristić AU - Nebojša Ikodinović TI - Completeness Theorem for Continuous Functions and Product Class-topologies JO - Publications de l'Institut Mathématique PY - 2016 SP - 119 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM160525001D/ DO - 10.2298/PIM160525001D LA - en ID - 10_2298_PIM160525001D ER -
%0 Journal Article %A Radosav Djordjević %A Vladimir Ristić %A Nebojša Ikodinović %T Completeness Theorem for Continuous Functions and Product Class-topologies %J Publications de l'Institut Mathématique %D 2016 %P 119 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM160525001D/ %R 10.2298/PIM160525001D %G en %F 10_2298_PIM160525001D
Radosav Djordjević; Vladimir Ristić; Nebojša Ikodinović. Completeness Theorem for Continuous Functions and Product Class-topologies. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 119 . doi: 10.2298/PIM160525001D
Cité par Sources :