On the Metrizability of TVS-Cone Metric Spaces
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 271
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Metric spaces are cone metric spaces, and cone metric spaces are TVS-cone metric spaces. We prove that TVS-cone metric spaces are paracompact. A metrization theorem of TVS-cone metric spaces is obtained by a purely topological tools. We obtaine that a homeomorphism $f$ of a compact space is expansive if and only if $f$ is TVS-cone expansive. In the end, for a TVS-cone metric topology, a concrete metric generating the topology is constructed.
Classification :
54D20;54E35;46A19 54E99;54H20
Keywords: Stone's method, TVS-cone metric space, paracompact, metrizable, TVS-cone expansive homeomorphism
Keywords: Stone's method, TVS-cone metric space, paracompact, metrizable, TVS-cone expansive homeomorphism
@article{10_2298_PIM1512271L,
author = {Shou Lin and Kedian Li and Ying Ge},
title = {On the {Metrizability} of {TVS-Cone} {Metric} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {271 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM1512271L},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM1512271L/}
}
TY - JOUR AU - Shou Lin AU - Kedian Li AU - Ying Ge TI - On the Metrizability of TVS-Cone Metric Spaces JO - Publications de l'Institut Mathématique PY - 2015 SP - 271 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM1512271L/ DO - 10.2298/PIM1512271L LA - en ID - 10_2298_PIM1512271L ER -
%0 Journal Article %A Shou Lin %A Kedian Li %A Ying Ge %T On the Metrizability of TVS-Cone Metric Spaces %J Publications de l'Institut Mathématique %D 2015 %P 271 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM1512271L/ %R 10.2298/PIM1512271L %G en %F 10_2298_PIM1512271L
Shou Lin; Kedian Li; Ying Ge. On the Metrizability of TVS-Cone Metric Spaces. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 271 . doi: 10.2298/PIM1512271L
Cité par Sources :