Some Remarks on Almost Menger Spaces and Weakly Menger Spaces
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 193
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A space $X$ is \emph{almost Menger (weakly Menger)} if for each sequence $(\U_n:n\in\mathbb N)$ of open covers of $X$ there exists a sequence $(\mathcal V_n:n\in\mathbb N)$ such that for every $n\in\mathbb N$, $\mathcal V_n$ is a finite subset of $\U_n$ and $\bigcup_{n\in\mathbb N}\bigcup\big\{\overline{V}:V\in\mathcal V_n\big\}=X$ (respectively, $\overline{\bigcup_{n\in\mathbb N}\bigcup\{V:V\in\mathcal V_n\}}=X$). We investigate the relationships among almost Menger spaces, weakly Menger spaces and Menger spaces, and also study topological properties of almost Menger spaces and weakly Menger spaces.
Classification :
54D20 54A35
Keywords: Menger spaces, almost Menger spaces, weakly Menger spaces
Keywords: Menger spaces, almost Menger spaces, weakly Menger spaces
@article{10_2298_PIM150513031S,
author = {Yan-Kui Song},
title = {Some {Remarks} on {Almost} {Menger} {Spaces} and {Weakly} {Menger} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {193 },
year = {2015},
volume = {_N_S_98},
number = {112},
doi = {10.2298/PIM150513031S},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150513031S/}
}
TY - JOUR AU - Yan-Kui Song TI - Some Remarks on Almost Menger Spaces and Weakly Menger Spaces JO - Publications de l'Institut Mathématique PY - 2015 SP - 193 VL - _N_S_98 IS - 112 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150513031S/ DO - 10.2298/PIM150513031S LA - en ID - 10_2298_PIM150513031S ER -
Yan-Kui Song. Some Remarks on Almost Menger Spaces and Weakly Menger Spaces. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 193 . doi: 10.2298/PIM150513031S
Cité par Sources :