On Commutativity of Quasi-Minimal Groups
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 31
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate if every quasi-minimal group is abelian, and give a positive answer for a quasi-minimal pure group having a $\emptyset$-definable partial order with uncountable chains. We also relate two properties of a complete theory in a countable language: the existence of a quasi-minimal model and the existence of a strongly regular type. As a consequence we derive the equivalence of conjectures on commutativity of quasi-minimal groups and commutativity of regular groups.
Classification :
03C45, 03C60, 20A15
Keywords: quasi-minimal group, strongly regular type
Keywords: quasi-minimal group, strongly regular type
@article{10_2298_PIM150510030M,
author = {Slavko Moconja},
title = {On {Commutativity} of {Quasi-Minimal} {Groups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
year = {2015},
volume = {_N_S_98},
number = {112},
doi = {10.2298/PIM150510030M},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150510030M/}
}
Slavko Moconja. On Commutativity of Quasi-Minimal Groups. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 31 . doi: 10.2298/PIM150510030M
Cité par Sources :