On Commutativity of Quasi-Minimal Groups
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate if every quasi-minimal group is abelian, and give a positive answer for a quasi-minimal pure group having a $\emptyset$-definable partial order with uncountable chains. We also relate two properties of a complete theory in a countable language: the existence of a quasi-minimal model and the existence of a strongly regular type. As a consequence we derive the equivalence of conjectures on commutativity of quasi-minimal groups and commutativity of regular groups.
DOI : 10.2298/PIM150510030M
Classification : 03C45, 03C60, 20A15
Keywords: quasi-minimal group, strongly regular type
@article{10_2298_PIM150510030M,
     author = {Slavko Moconja},
     title = {On {Commutativity} of {Quasi-Minimal} {Groups}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM150510030M},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150510030M/}
}
TY  - JOUR
AU  - Slavko Moconja
TI  - On Commutativity of Quasi-Minimal Groups
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 31 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150510030M/
DO  - 10.2298/PIM150510030M
LA  - en
ID  - 10_2298_PIM150510030M
ER  - 
%0 Journal Article
%A Slavko Moconja
%T On Commutativity of Quasi-Minimal Groups
%J Publications de l'Institut Mathématique
%D 2015
%P 31 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150510030M/
%R 10.2298/PIM150510030M
%G en
%F 10_2298_PIM150510030M
Slavko Moconja. On Commutativity of Quasi-Minimal Groups. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 31 . doi : 10.2298/PIM150510030M. http://geodesic.mathdoc.fr/articles/10.2298/PIM150510030M/

Cité par Sources :