An Example of Bruns--Gubeladze $K$-Theory Defined by Three Dimensional Polytope
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 137 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For the Bruns--Gubeladze polytopal $K$-theory, we describe a new series of three dimensional balanced Col-divisible polytopes. Also we calculate the corresponding elementary groups and as a corollary obtain an expression of the polytopal $K$-groups in terms of the Quillen $K$-groups.
DOI : 10.2298/PIM150503029P
Classification : 19C09, 19D06, 19M05
Keywords: K-theory, lattice polytope, elementary automorphism, Steinberg group
@article{10_2298_PIM150503029P,
     author = {Th. Yu. Popelensky},
     title = {An {Example} of {Bruns--Gubeladze} $K${-Theory} {Defined} by {Three} {Dimensional} {Polytope}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {137 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM150503029P},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150503029P/}
}
TY  - JOUR
AU  - Th. Yu. Popelensky
TI  - An Example of Bruns--Gubeladze $K$-Theory Defined by Three Dimensional Polytope
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 137 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150503029P/
DO  - 10.2298/PIM150503029P
LA  - en
ID  - 10_2298_PIM150503029P
ER  - 
%0 Journal Article
%A Th. Yu. Popelensky
%T An Example of Bruns--Gubeladze $K$-Theory Defined by Three Dimensional Polytope
%J Publications de l'Institut Mathématique
%D 2015
%P 137 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150503029P/
%R 10.2298/PIM150503029P
%G en
%F 10_2298_PIM150503029P
Th. Yu. Popelensky. An Example of Bruns--Gubeladze $K$-Theory Defined by Three Dimensional Polytope. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 137 . doi : 10.2298/PIM150503029P. http://geodesic.mathdoc.fr/articles/10.2298/PIM150503029P/

Cité par Sources :