A New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind
Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 243
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We find an explicit formula for computing the Bernoulli numbers of the second kind in terms of the signed Stirling numbers of the first kind.
Classification :
11B68, 11B73, 11B83
Keywords: explicit formula, Bernoulli numbers of the second kind, Stirling numbers of the first kind, harmonic number
Keywords: explicit formula, Bernoulli numbers of the second kind, Stirling numbers of the first kind, harmonic number
@article{10_2298_PIM150501028Q,
author = {Feng Qi},
title = {A {New} {Formula} for the {Bernoulli} {Numbers} of the {Second} {Kind} in {Terms} of the {Stirling} {Numbers} of the {First} {Kind}},
journal = {Publications de l'Institut Math\'ematique},
pages = {243 },
publisher = {mathdoc},
volume = {_N_S_100},
number = {114},
year = {2016},
doi = {10.2298/PIM150501028Q},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150501028Q/}
}
TY - JOUR AU - Feng Qi TI - A New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind JO - Publications de l'Institut Mathématique PY - 2016 SP - 243 VL - _N_S_100 IS - 114 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150501028Q/ DO - 10.2298/PIM150501028Q LA - en ID - 10_2298_PIM150501028Q ER -
%0 Journal Article %A Feng Qi %T A New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind %J Publications de l'Institut Mathématique %D 2016 %P 243 %V _N_S_100 %N 114 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM150501028Q/ %R 10.2298/PIM150501028Q %G en %F 10_2298_PIM150501028Q
Feng Qi. A New Formula for the Bernoulli Numbers of the Second Kind in Terms of the Stirling Numbers of the First Kind. Publications de l'Institut Mathématique, _N_S_100 (2016) no. 114, p. 243 . doi: 10.2298/PIM150501028Q
Cité par Sources :