On a Type of Semi-Symmetric Metric Connection on a Riemannian Manifold
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 211
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study a type of semi-symmetric metric connection on a Riemannian manifold whose torsion tensor is almost pseudo symmetric and the associated $1$-form of almost pseudo symmetric manifold is equal to the associated $1$-form of the semi-symmetric metric connection.
Classification :
53C25
Keywords: semi-symmetric metric connection, almost pseudo symmetric manifold, quasiconstant curvature, torseforming vector field
Keywords: semi-symmetric metric connection, almost pseudo symmetric manifold, quasiconstant curvature, torseforming vector field
@article{10_2298_PIM150317025D,
author = {Uday C and and De and Ajit Barman},
title = {On a {Type} of {Semi-Symmetric} {Metric} {Connection} on a {Riemannian} {Manifold}},
journal = {Publications de l'Institut Math\'ematique},
pages = {211 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM150317025D},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150317025D/}
}
TY - JOUR AU - Uday C AU - and De AU - Ajit Barman TI - On a Type of Semi-Symmetric Metric Connection on a Riemannian Manifold JO - Publications de l'Institut Mathématique PY - 2015 SP - 211 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150317025D/ DO - 10.2298/PIM150317025D LA - en ID - 10_2298_PIM150317025D ER -
%0 Journal Article %A Uday C %A and De %A Ajit Barman %T On a Type of Semi-Symmetric Metric Connection on a Riemannian Manifold %J Publications de l'Institut Mathématique %D 2015 %P 211 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM150317025D/ %R 10.2298/PIM150317025D %G en %F 10_2298_PIM150317025D
Uday C; and De; Ajit Barman. On a Type of Semi-Symmetric Metric Connection on a Riemannian Manifold. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 211 . doi: 10.2298/PIM150317025D
Cité par Sources :