Simple Groups with the Same Prime Graph as $^2D_n(q)$
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 251 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In 2006, Vasil'ev posed the problem: \emph{Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphic nonabelian finite simple groups with the same graphs of primes? Conjecture: $k=5$.} In 2013, Zvezdina, confirmed the conjecture for the case when one of the groups is alternating. We continue this work and determine all nonabelian simple groups having the same prime graphs as the nonabelian simple group $^2D_n(q)$.
DOI : 10.2298/PIM150304024K
Classification : 20D05, 20D60
Keywords: prime graph, simple group, Vasil'ev conjecture
@article{10_2298_PIM150304024K,
     author = {Behrooz Khosravi and A. Babai},
     title = {Simple {Groups} with the {Same} {Prime} {Graph} as $^2D_n(q)$},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {251 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM150304024K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150304024K/}
}
TY  - JOUR
AU  - Behrooz Khosravi
AU  - A. Babai
TI  - Simple Groups with the Same Prime Graph as $^2D_n(q)$
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 251 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150304024K/
DO  - 10.2298/PIM150304024K
LA  - en
ID  - 10_2298_PIM150304024K
ER  - 
%0 Journal Article
%A Behrooz Khosravi
%A A. Babai
%T Simple Groups with the Same Prime Graph as $^2D_n(q)$
%J Publications de l'Institut Mathématique
%D 2015
%P 251 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150304024K/
%R 10.2298/PIM150304024K
%G en
%F 10_2298_PIM150304024K
Behrooz Khosravi; A. Babai. Simple Groups with the Same Prime Graph as $^2D_n(q)$. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 251 . doi : 10.2298/PIM150304024K. http://geodesic.mathdoc.fr/articles/10.2298/PIM150304024K/

Cité par Sources :