On Some Class of Integral Operators Related to the Bergman Projection
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 97
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the integral operator $ C_lpha f(z)=ıt_D\frac{f(\xi)}{(1-z\bar{\xi})^{lpha}}\,dA(\xi),\quad zı D, $ where $0\alpha2$ and $D$ is the unit disc in the complex plane. and investigate boundedness of it on the space $L^p(D,d\lambda)$, $1$, where $d\lambda$ is the Möbius invariant measure in $D$. We also consider the spectral properties of $C_\alpha$ when it acts on the Hilbert space $L^2(D,d\lambda)$, i.e., in the case $p=2$, when $C_\alpha$ maps $L^2(D,d\lambda)$ into the Dirichlet space.
Classification :
46E15, 46E20
Keywords: Bergman projection, singular numbers of a compact operator
Keywords: Bergman projection, singular numbers of a compact operator
@article{10_2298_PIM150220023V,
author = {Djordjije Vujadinovi\'c},
title = {On {Some} {Class} of {Integral} {Operators} {Related} to the {Bergman} {Projection}},
journal = {Publications de l'Institut Math\'ematique},
pages = {97 },
year = {2015},
volume = {_N_S_98},
number = {112},
doi = {10.2298/PIM150220023V},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/}
}
TY - JOUR AU - Djordjije Vujadinović TI - On Some Class of Integral Operators Related to the Bergman Projection JO - Publications de l'Institut Mathématique PY - 2015 SP - 97 VL - _N_S_98 IS - 112 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/ DO - 10.2298/PIM150220023V LA - en ID - 10_2298_PIM150220023V ER -
%0 Journal Article %A Djordjije Vujadinović %T On Some Class of Integral Operators Related to the Bergman Projection %J Publications de l'Institut Mathématique %D 2015 %P 97 %V _N_S_98 %N 112 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/ %R 10.2298/PIM150220023V %G en %F 10_2298_PIM150220023V
Djordjije Vujadinović. On Some Class of Integral Operators Related to the Bergman Projection. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 97 . doi: 10.2298/PIM150220023V
Cité par Sources :