On Some Class of Integral Operators Related to the Bergman Projection
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 97
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the integral operator $ C_lpha f(z)=ıt_D\frac{f(\xi)}{(1-z\bar{\xi})^{lpha}}\,dA(\xi),\quad zı D, $ where $0\alpha2$ and $D$ is the unit disc in the complex plane. and investigate boundedness of it on the space $L^p(D,d\lambda)$, $1$, where $d\lambda$ is the Möbius invariant measure in $D$. We also consider the spectral properties of $C_\alpha$ when it acts on the Hilbert space $L^2(D,d\lambda)$, i.e., in the case $p=2$, when $C_\alpha$ maps $L^2(D,d\lambda)$ into the Dirichlet space.
Classification :
46E15, 46E20
Keywords: Bergman projection, singular numbers of a compact operator
Keywords: Bergman projection, singular numbers of a compact operator
@article{10_2298_PIM150220023V,
author = {Djordjije Vujadinovi\'c},
title = {On {Some} {Class} of {Integral} {Operators} {Related} to the {Bergman} {Projection}},
journal = {Publications de l'Institut Math\'ematique},
pages = {97 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM150220023V},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/}
}
TY - JOUR AU - Djordjije Vujadinović TI - On Some Class of Integral Operators Related to the Bergman Projection JO - Publications de l'Institut Mathématique PY - 2015 SP - 97 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/ DO - 10.2298/PIM150220023V LA - en ID - 10_2298_PIM150220023V ER -
%0 Journal Article %A Djordjije Vujadinović %T On Some Class of Integral Operators Related to the Bergman Projection %J Publications de l'Institut Mathématique %D 2015 %P 97 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM150220023V/ %R 10.2298/PIM150220023V %G en %F 10_2298_PIM150220023V
Djordjije Vujadinović. On Some Class of Integral Operators Related to the Bergman Projection. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 97 . doi: 10.2298/PIM150220023V
Cité par Sources :