Semi-Basic $1$-Forms and Courant Structure for Metrizability Problems
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 153 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The metrizability of sprays, particularly symmetric linear connections, is studied in terms of semi-basic 1-forms using the tools developed by Bucataru and Dahl in \cite{b:d}. We introduce a type of metrizability in relationship with the Finsler and projective metrizability. The Lagrangian corresponding to the Finsler metrizability, as well as the Bucataru--Dahl characterization of Finsler and projective metrizability are expressed by means of the Courant structure on the big tangent bundle of $TM$. A byproduct of our computations is that a flat Riemannian metric, or generally an R-flat Finslerian spray, yields two complementary, but not orthogonally, Dirac structures on $T^{\text{big}}TM$. These Dirac structures are also Lagrangian subbundles with respect to the natural almost symplectic structure of $T^{\text{big}}TM$.
DOI : 10.2298/PIM150203020C
Classification : 53C60 53C05;53C15;53C20;53C55;53D18
Keywords: (semi)spray, metrizability, semi-basic 1-form, symplectic form, homogeneity, big tangent bundle, Courant bracket, Dirac structure, isotropic subbundle, Poincaré--Cartan 1-form
@article{10_2298_PIM150203020C,
     author = {Mircea Crasmareanu},
     title = {Semi-Basic $1${-Forms} and {Courant} {Structure} for {Metrizability} {Problems}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {153 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM150203020C},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150203020C/}
}
TY  - JOUR
AU  - Mircea Crasmareanu
TI  - Semi-Basic $1$-Forms and Courant Structure for Metrizability Problems
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 153 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150203020C/
DO  - 10.2298/PIM150203020C
LA  - en
ID  - 10_2298_PIM150203020C
ER  - 
%0 Journal Article
%A Mircea Crasmareanu
%T Semi-Basic $1$-Forms and Courant Structure for Metrizability Problems
%J Publications de l'Institut Mathématique
%D 2015
%P 153 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150203020C/
%R 10.2298/PIM150203020C
%G en
%F 10_2298_PIM150203020C
Mircea Crasmareanu. Semi-Basic $1$-Forms and Courant Structure for Metrizability Problems. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 153 . doi : 10.2298/PIM150203020C. http://geodesic.mathdoc.fr/articles/10.2298/PIM150203020C/

Cité par Sources :