A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 257
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
For a finite group $G$, let $\operatorname{cd}(G)$ be the set of irreducible complex character degrees of $G$ forgetting multiplicities and $X_1(G)$ be the set of all irreducible complex character degrees of $G$ counting multiplicities. Suppose that $p$ is a prime number. We prove that if $G$ is a finite group such that $|G|=|\operatorname{PGL}(2,p)|$, $p\in\operatorname{cd}(G)$ and $\max(\operatorname{cd}(G))=p+1$, then $G\cong\operatorname{PGL}(2,p),~SL(2,p)$ or $\operatorname{PSL}(2,p)\times A$, where $A$ is a cyclic group of order $(2,p-1)$. Also, we show that if $G$ is a finite group with $X_1(G)=X_1(\operatorname{PGL}(2,p^n))$, then $G\cong\operatorname{PGL}(2,p^n)$. In particular, this implies that $\operatorname{PGL}(2,p^n)$ is uniquely determined by the structure of its complex group algebra.
Classification :
20C15 20E99
Keywords: irreducible character degree, classification theorem of the finite simple group, complex group algebras
Keywords: irreducible character degree, classification theorem of the finite simple group, complex group algebras
@article{10_2298_PIM150111017H,
author = {Somayeh Heydari and Neda Ahanjideh},
title = {A {Characterization} of {PGL}$(2,p^n)$ by {Some} {Irreducible} {Complex} {Character} {Degrees}},
journal = {Publications de l'Institut Math\'ematique},
pages = {257 },
publisher = {mathdoc},
volume = {_N_S_99},
number = {113},
year = {2016},
doi = {10.2298/PIM150111017H},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/}
}
TY - JOUR AU - Somayeh Heydari AU - Neda Ahanjideh TI - A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees JO - Publications de l'Institut Mathématique PY - 2016 SP - 257 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/ DO - 10.2298/PIM150111017H LA - en ID - 10_2298_PIM150111017H ER -
%0 Journal Article %A Somayeh Heydari %A Neda Ahanjideh %T A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees %J Publications de l'Institut Mathématique %D 2016 %P 257 %V _N_S_99 %N 113 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/ %R 10.2298/PIM150111017H %G en %F 10_2298_PIM150111017H
Somayeh Heydari; Neda Ahanjideh. A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 257 . doi: 10.2298/PIM150111017H
Cité par Sources :