A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 257 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For a finite group $G$, let $\operatorname{cd}(G)$ be the set of irreducible complex character degrees of $G$ forgetting multiplicities and $X_1(G)$ be the set of all irreducible complex character degrees of $G$ counting multiplicities. Suppose that $p$ is a prime number. We prove that if $G$ is a finite group such that $|G|=|\operatorname{PGL}(2,p)|$, $p\in\operatorname{cd}(G)$ and $\max(\operatorname{cd}(G))=p+1$, then $G\cong\operatorname{PGL}(2,p),~SL(2,p)$ or $\operatorname{PSL}(2,p)\times A$, where $A$ is a cyclic group of order $(2,p-1)$. Also, we show that if $G$ is a finite group with $X_1(G)=X_1(\operatorname{PGL}(2,p^n))$, then $G\cong\operatorname{PGL}(2,p^n)$. In particular, this implies that $\operatorname{PGL}(2,p^n)$ is uniquely determined by the structure of its complex group algebra.
DOI : 10.2298/PIM150111017H
Classification : 20C15 20E99
Keywords: irreducible character degree, classification theorem of the finite simple group, complex group algebras
@article{10_2298_PIM150111017H,
     author = {Somayeh Heydari and Neda Ahanjideh},
     title = {A {Characterization} of {PGL}$(2,p^n)$ by {Some} {Irreducible} {Complex} {Character} {Degrees}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {257 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM150111017H},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/}
}
TY  - JOUR
AU  - Somayeh Heydari
AU  - Neda Ahanjideh
TI  - A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 257 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/
DO  - 10.2298/PIM150111017H
LA  - en
ID  - 10_2298_PIM150111017H
ER  - 
%0 Journal Article
%A Somayeh Heydari
%A Neda Ahanjideh
%T A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees
%J Publications de l'Institut Mathématique
%D 2016
%P 257 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/
%R 10.2298/PIM150111017H
%G en
%F 10_2298_PIM150111017H
Somayeh Heydari; Neda Ahanjideh. A Characterization of PGL$(2,p^n)$ by Some Irreducible Complex Character Degrees. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 257 . doi : 10.2298/PIM150111017H. http://geodesic.mathdoc.fr/articles/10.2298/PIM150111017H/

Cité par Sources :