Wave Fronts Via Fourier Series Coefficients
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Motivated by the product of periodic distributions, we give a new description of the wave front and the Sobolev-type wave front of a distribution $f\in\mathscr{D}'(\R^d)$ in terms of Fourier series coefficients.
DOI : 10.2298/PIM150107001M
Classification : 35A18 46F10
Keywords: wave fronts, Fourier series, multiplication of distributions
@article{10_2298_PIM150107001M,
     author = {Snje\v{z}ana Maksimovi\'c and Stevan Pilipovi\'c and Petar Sokoloski and Jasson Vindas},
     title = {Wave {Fronts} {Via} {Fourier} {Series} {Coefficients}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM150107001M},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM150107001M/}
}
TY  - JOUR
AU  - Snježana Maksimović
AU  - Stevan Pilipović
AU  - Petar Sokoloski
AU  - Jasson Vindas
TI  - Wave Fronts Via Fourier Series Coefficients
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 1 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM150107001M/
DO  - 10.2298/PIM150107001M
LA  - en
ID  - 10_2298_PIM150107001M
ER  - 
%0 Journal Article
%A Snježana Maksimović
%A Stevan Pilipović
%A Petar Sokoloski
%A Jasson Vindas
%T Wave Fronts Via Fourier Series Coefficients
%J Publications de l'Institut Mathématique
%D 2015
%P 1 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM150107001M/
%R 10.2298/PIM150107001M
%G en
%F 10_2298_PIM150107001M
Snježana Maksimović; Stevan Pilipović; Petar Sokoloski; Jasson Vindas. Wave Fronts Via Fourier Series Coefficients. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 1 . doi : 10.2298/PIM150107001M. http://geodesic.mathdoc.fr/articles/10.2298/PIM150107001M/

Cité par Sources :