Context-Freeness of the Languages of Schützenberger Automata of HNN-Extensions of Finite Inverse Semigroups
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 177
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that the Schützenberger graph of any element of the HNN-extension of a finite inverse semigroup $S$ with respect to its standard presentation is a context-free graph in the sense of [11], showing that the language $L$ recognized by this automaton is context-free. Finally we explicitly construct the grammar generating $L$, and from this fact we show that the word problem for an HNN-extension of a finite inverse semigroup $S$ is decidable and lies in the complexity class of polynomial time problems.
Classification :
20M18, 20M35, 68Q45
Keywords: inverse semigroup, Schützenberger automaton, context-free language
Keywords: inverse semigroup, Schützenberger automaton, context-free language
@article{10_2298_PIM141227016A,
author = {Mohammed Abu Ayyash and Emanuele Rodaro},
title = {Context-Freeness of the {Languages} of {Sch\"utzenberger} {Automata} of {HNN-Extensions} of {Finite} {Inverse} {Semigroups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {177 },
publisher = {mathdoc},
volume = {_N_S_99},
number = {113},
year = {2016},
doi = {10.2298/PIM141227016A},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141227016A/}
}
TY - JOUR AU - Mohammed Abu Ayyash AU - Emanuele Rodaro TI - Context-Freeness of the Languages of Schützenberger Automata of HNN-Extensions of Finite Inverse Semigroups JO - Publications de l'Institut Mathématique PY - 2016 SP - 177 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM141227016A/ DO - 10.2298/PIM141227016A LA - en ID - 10_2298_PIM141227016A ER -
%0 Journal Article %A Mohammed Abu Ayyash %A Emanuele Rodaro %T Context-Freeness of the Languages of Schützenberger Automata of HNN-Extensions of Finite Inverse Semigroups %J Publications de l'Institut Mathématique %D 2016 %P 177 %V _N_S_99 %N 113 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM141227016A/ %R 10.2298/PIM141227016A %G en %F 10_2298_PIM141227016A
Mohammed Abu Ayyash; Emanuele Rodaro. Context-Freeness of the Languages of Schützenberger Automata of HNN-Extensions of Finite Inverse Semigroups. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 177 . doi: 10.2298/PIM141227016A
Cité par Sources :