NSE Characterization of the Simple Group $L_2(3^n)$
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 193
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G$ be a group and $\pi(G)$ be the set of primes $p$ such that $G$ contains an element of order $p$. Let $\operatorname{nse}(G)$ be the set of the numbers of elements of $G$ of the same order. We prove that the simple group $L_2(3^n)$ is uniquely determined by $\operatorname{nse}(L_2(3^n))$, where $|\pi(L_2(3^n))|=4$.
Classification :
20D60 20D06
Keywords: Element order, set of the numbers of elements of the same order, projective special linear group
Keywords: Element order, set of the numbers of elements of the same order, projective special linear group
@article{10_2298_PIM141220015M,
author = {Hosein Parvizi Mosaed and Ali Iranmanesh and Abolfazl Tehranian},
title = {NSE {Characterization} of the {Simple} {Group} $L_2(3^n)$},
journal = {Publications de l'Institut Math\'ematique},
pages = {193 },
year = {2016},
volume = {_N_S_99},
number = {113},
doi = {10.2298/PIM141220015M},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141220015M/}
}
TY - JOUR AU - Hosein Parvizi Mosaed AU - Ali Iranmanesh AU - Abolfazl Tehranian TI - NSE Characterization of the Simple Group $L_2(3^n)$ JO - Publications de l'Institut Mathématique PY - 2016 SP - 193 VL - _N_S_99 IS - 113 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM141220015M/ DO - 10.2298/PIM141220015M LA - en ID - 10_2298_PIM141220015M ER -
%0 Journal Article %A Hosein Parvizi Mosaed %A Ali Iranmanesh %A Abolfazl Tehranian %T NSE Characterization of the Simple Group $L_2(3^n)$ %J Publications de l'Institut Mathématique %D 2016 %P 193 %V _N_S_99 %N 113 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM141220015M/ %R 10.2298/PIM141220015M %G en %F 10_2298_PIM141220015M
Hosein Parvizi Mosaed; Ali Iranmanesh; Abolfazl Tehranian. NSE Characterization of the Simple Group $L_2(3^n)$. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 193 . doi: 10.2298/PIM141220015M
Cité par Sources :