On Generalization of Injective Modules
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 249 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

As a proper generalization of injective modules in term of supplements, we say that a module $M$ has \emph{the property} (SE) (respectively, \emph{the property} (SSE)) if, whenever $M\subseteq N$, $M$ has a supplement that is a direct summand of $N$ (respectively, a strong supplement in $N$). We show that a ring $R$ is a left and right artinian serial ring with $\operatorname{Rad}(R)^2=0$ if and only if every left $R$-module has the property (SSE). We prove that a commutative ring $R$ is an artinian serial ring if and only if every left $R$-module has the property~(SE).
DOI : 10.2298/PIM141215014T
Classification : 16D10 16D50
Keywords: supplement, module with the properties (SE) and (SSE), artinian serial ring
@article{10_2298_PIM141215014T,
     author = {Burcu Ni\c{s}anc{\i} T\"urkmen},
     title = {On {Generalization} of {Injective} {Modules}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {249 },
     publisher = {mathdoc},
     volume = {_N_S_99},
     number = {113},
     year = {2016},
     doi = {10.2298/PIM141215014T},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/}
}
TY  - JOUR
AU  - Burcu Nişancı Türkmen
TI  - On Generalization of Injective Modules
JO  - Publications de l'Institut Mathématique
PY  - 2016
SP  - 249 
VL  - _N_S_99
IS  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/
DO  - 10.2298/PIM141215014T
LA  - en
ID  - 10_2298_PIM141215014T
ER  - 
%0 Journal Article
%A Burcu Nişancı Türkmen
%T On Generalization of Injective Modules
%J Publications de l'Institut Mathématique
%D 2016
%P 249 
%V _N_S_99
%N 113
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/
%R 10.2298/PIM141215014T
%G en
%F 10_2298_PIM141215014T
Burcu Nişancı Türkmen. On Generalization of Injective Modules. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 249 . doi : 10.2298/PIM141215014T. http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/

Cité par Sources :