On Generalization of Injective Modules
Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 249
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
As a proper generalization of injective modules in term of supplements, we say that a module $M$ has \emph{the property} (SE) (respectively, \emph{the property} (SSE)) if, whenever $M\subseteq N$, $M$ has a supplement that is a direct summand of $N$ (respectively, a strong supplement in $N$). We show that a ring $R$ is a left and right artinian serial ring with $\operatorname{Rad}(R)^2=0$ if and only if every left $R$-module has the property (SSE). We prove that a commutative ring $R$ is an artinian serial ring if and only if every left $R$-module has the property~(SE).
Classification :
16D10 16D50
Keywords: supplement, module with the properties (SE) and (SSE), artinian serial ring
Keywords: supplement, module with the properties (SE) and (SSE), artinian serial ring
@article{10_2298_PIM141215014T,
author = {Burcu Ni\c{s}anc{\i} T\"urkmen},
title = {On {Generalization} of {Injective} {Modules}},
journal = {Publications de l'Institut Math\'ematique},
pages = {249 },
publisher = {mathdoc},
volume = {_N_S_99},
number = {113},
year = {2016},
doi = {10.2298/PIM141215014T},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/}
}
TY - JOUR AU - Burcu Nişancı Türkmen TI - On Generalization of Injective Modules JO - Publications de l'Institut Mathématique PY - 2016 SP - 249 VL - _N_S_99 IS - 113 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM141215014T/ DO - 10.2298/PIM141215014T LA - en ID - 10_2298_PIM141215014T ER -
Burcu Nişancı Türkmen. On Generalization of Injective Modules. Publications de l'Institut Mathématique, _N_S_99 (2016) no. 113, p. 249 . doi: 10.2298/PIM141215014T
Cité par Sources :