A Note on Multivariate Polynomial Division and Gröbner Bases
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 43
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We first present purely combinatorial proofs of two facts:
the well-known fact that a monomial ordering must be a well ordering,
and the fact (obtained earlier by Buchberger, but not widely known)
that the division procedure in the ring of multivariate polynomials over a field
terminates even if the division term is not the leading term, but is freely chosen.
The latter is then used to introduce a previously unnoted, seemingly weaker, criterion
for an ideal basis to be Gr\"obner, and to suggest a new heuristic approach to Gr\"obner basis computations.
@article{10_2298_PIM141104001L,
author = {Aleksandar T. Lipkovski and Samira Zeada},
title = {A {Note} on {Multivariate} {Polynomial} {Division} and {Gr\"obner} {Bases}},
journal = {Publications de l'Institut Math\'ematique},
pages = {43 },
year = {2015},
volume = {_N_S_97},
number = {111},
doi = {10.2298/PIM141104001L},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM141104001L/}
}
TY - JOUR AU - Aleksandar T. Lipkovski AU - Samira Zeada TI - A Note on Multivariate Polynomial Division and Gröbner Bases JO - Publications de l'Institut Mathématique PY - 2015 SP - 43 VL - _N_S_97 IS - 111 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM141104001L/ DO - 10.2298/PIM141104001L LA - en ID - 10_2298_PIM141104001L ER -
%0 Journal Article %A Aleksandar T. Lipkovski %A Samira Zeada %T A Note on Multivariate Polynomial Division and Gröbner Bases %J Publications de l'Institut Mathématique %D 2015 %P 43 %V _N_S_97 %N 111 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM141104001L/ %R 10.2298/PIM141104001L %G en %F 10_2298_PIM141104001L
Aleksandar T. Lipkovski; Samira Zeada. A Note on Multivariate Polynomial Division and Gröbner Bases. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 43 . doi: 10.2298/PIM141104001L
Cité par Sources :