Bass Numbers of Generalized Local Cohomology Modules
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 233
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ be a Noetherian ring, $M$ a finitely generated $R$-module and $N$ an arbitrary $R$-module.
We consider the generalized local cohomology modules, with respect to an arbitrary ideal $I$ of $R$,
and prove that, for all nonnegative integers $r,t$ and all $\frak p\in\operatorname{Spec}(R)$
the Bass number $\mu^r(\frak p,H^t_I(M,N))$ is bounded above by
$\sum_{j=0}^t\mu^r\big(\frak p,\operatorname{Ext}^{t-j}_R(M, H^j_I(N))\big)$.
A corollary is that
$
\operatorname{Ass}\big(H_I^t(M,N)\big)\subseteq
\bigcup_{j=0}^t\operatorname{Ass}\big(\operatorname{Ext}^{t-j}_R(M,H^j_I(N))\big).
$
In a slightly different direction, we also present some well known results about generalized local cohomology modules.
Classification :
13D45 14B15
Keywords: generalized local cohomology, Bass numbers
Keywords: generalized local cohomology, Bass numbers
@article{10_2298_PIM140620001P,
author = {Sh. Payrovi and S. Babaei and I. Khalili-Gorji},
title = {Bass {Numbers} of {Generalized} {Local} {Cohomology} {Modules}},
journal = {Publications de l'Institut Math\'ematique},
pages = {233 },
publisher = {mathdoc},
volume = {_N_S_97},
number = {111},
year = {2015},
doi = {10.2298/PIM140620001P},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/}
}
TY - JOUR AU - Sh. Payrovi AU - S. Babaei AU - I. Khalili-Gorji TI - Bass Numbers of Generalized Local Cohomology Modules JO - Publications de l'Institut Mathématique PY - 2015 SP - 233 VL - _N_S_97 IS - 111 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/ DO - 10.2298/PIM140620001P LA - en ID - 10_2298_PIM140620001P ER -
%0 Journal Article %A Sh. Payrovi %A S. Babaei %A I. Khalili-Gorji %T Bass Numbers of Generalized Local Cohomology Modules %J Publications de l'Institut Mathématique %D 2015 %P 233 %V _N_S_97 %N 111 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/ %R 10.2298/PIM140620001P %G en %F 10_2298_PIM140620001P
Sh. Payrovi; S. Babaei; I. Khalili-Gorji. Bass Numbers of Generalized Local Cohomology Modules. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 233 . doi: 10.2298/PIM140620001P
Cité par Sources :