Bass Numbers of Generalized Local Cohomology Modules
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 233 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a Noetherian ring, $M$ a finitely generated $R$-module and $N$ an arbitrary $R$-module. We consider the generalized local cohomology modules, with respect to an arbitrary ideal $I$ of $R$, and prove that, for all nonnegative integers $r,t$ and all $\frak p\in\operatorname{Spec}(R)$ the Bass number $\mu^r(\frak p,H^t_I(M,N))$ is bounded above by $\sum_{j=0}^t\mu^r\big(\frak p,\operatorname{Ext}^{t-j}_R(M, H^j_I(N))\big)$. A corollary is that $ \operatorname{Ass}\big(H_I^t(M,N)\big)\subseteq \bigcup_{j=0}^t\operatorname{Ass}\big(\operatorname{Ext}^{t-j}_R(M,H^j_I(N))\big). $ In a slightly different direction, we also present some well known results about generalized local cohomology modules.
DOI : 10.2298/PIM140620001P
Classification : 13D45 14B15
Keywords: generalized local cohomology, Bass numbers
@article{10_2298_PIM140620001P,
     author = {Sh. Payrovi and S. Babaei and I. Khalili-Gorji},
     title = {Bass {Numbers} of {Generalized} {Local} {Cohomology} {Modules}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {233 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM140620001P},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/}
}
TY  - JOUR
AU  - Sh. Payrovi
AU  - S. Babaei
AU  - I. Khalili-Gorji
TI  - Bass Numbers of Generalized Local Cohomology Modules
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 233 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/
DO  - 10.2298/PIM140620001P
LA  - en
ID  - 10_2298_PIM140620001P
ER  - 
%0 Journal Article
%A Sh. Payrovi
%A S. Babaei
%A I. Khalili-Gorji
%T Bass Numbers of Generalized Local Cohomology Modules
%J Publications de l'Institut Mathématique
%D 2015
%P 233 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/
%R 10.2298/PIM140620001P
%G en
%F 10_2298_PIM140620001P
Sh. Payrovi; S. Babaei; I. Khalili-Gorji. Bass Numbers of Generalized Local Cohomology Modules. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 233 . doi : 10.2298/PIM140620001P. http://geodesic.mathdoc.fr/articles/10.2298/PIM140620001P/

Cité par Sources :