Gradient Ricci Solitons on Almost Kenmotsu Manifolds
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 227 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If the metric of an almost Kenmotsu manifold with conformal Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and the Ricci soliton is expanding. Moreover, let $(M^{2n+1},\phi,\xi,\eta,g)$ be an almost Kenmotsu manifold with $\xi$ belonging to the $(k,\mu)'$-nullity distribution and $h\neq0$. If the metric $g$ of $M^{2n+1}$ is a gradient Ricci soliton, then $M^{2n+1}$ is locally isometric to the Riemannian product of an $(n+1)$-dimensional manifold of constant sectional curvature $-4$ and a flat $n$-dimensional manifold, also, the Ricci soliton is expanding with $\lambda=4n$.
DOI : 10.2298/PIM140527001W
Classification : 53C25 53D15
Keywords: almost Kenmotsu manifold, gradient Ricci soliton, $\eta$-Einstein condition, nullity distribution
@article{10_2298_PIM140527001W,
     author = {Yaning Wang and Uday C and and De and Ximin Liu},
     title = {Gradient {Ricci} {Solitons} on {Almost} {Kenmotsu} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {227 },
     publisher = {mathdoc},
     volume = {_N_S_98},
     number = {112},
     year = {2015},
     doi = {10.2298/PIM140527001W},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/}
}
TY  - JOUR
AU  - Yaning Wang
AU  - Uday C
AU  - and De
AU  - Ximin Liu
TI  - Gradient Ricci Solitons on Almost Kenmotsu Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 227 
VL  - _N_S_98
IS  - 112
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/
DO  - 10.2298/PIM140527001W
LA  - en
ID  - 10_2298_PIM140527001W
ER  - 
%0 Journal Article
%A Yaning Wang
%A Uday C
%A and De
%A Ximin Liu
%T Gradient Ricci Solitons on Almost Kenmotsu Manifolds
%J Publications de l'Institut Mathématique
%D 2015
%P 227 
%V _N_S_98
%N 112
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/
%R 10.2298/PIM140527001W
%G en
%F 10_2298_PIM140527001W
Yaning Wang; Uday C; and De; Ximin Liu. Gradient Ricci Solitons on Almost Kenmotsu Manifolds. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 227 . doi : 10.2298/PIM140527001W. http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/

Cité par Sources :