Gradient Ricci Solitons on Almost Kenmotsu Manifolds
Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 227
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
If the metric of an almost Kenmotsu manifold with conformal Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and the Ricci soliton is expanding. Moreover, let $(M^{2n+1},\phi,\xi,\eta,g)$ be an almost Kenmotsu manifold with $\xi$ belonging to the $(k,\mu)'$-nullity distribution and $h\neq0$. If the metric $g$ of $M^{2n+1}$ is a gradient Ricci soliton, then $M^{2n+1}$ is locally isometric to the Riemannian product of an $(n+1)$-dimensional manifold of constant sectional curvature $-4$ and a flat $n$-dimensional manifold, also, the Ricci soliton is expanding with $\lambda=4n$.
Classification :
53C25 53D15
Keywords: almost Kenmotsu manifold, gradient Ricci soliton, $\eta$-Einstein condition, nullity distribution
Keywords: almost Kenmotsu manifold, gradient Ricci soliton, $\eta$-Einstein condition, nullity distribution
@article{10_2298_PIM140527001W,
author = {Yaning Wang and Uday C and and De and Ximin Liu},
title = {Gradient {Ricci} {Solitons} on {Almost} {Kenmotsu} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {227 },
publisher = {mathdoc},
volume = {_N_S_98},
number = {112},
year = {2015},
doi = {10.2298/PIM140527001W},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/}
}
TY - JOUR AU - Yaning Wang AU - Uday C AU - and De AU - Ximin Liu TI - Gradient Ricci Solitons on Almost Kenmotsu Manifolds JO - Publications de l'Institut Mathématique PY - 2015 SP - 227 VL - _N_S_98 IS - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/ DO - 10.2298/PIM140527001W LA - en ID - 10_2298_PIM140527001W ER -
%0 Journal Article %A Yaning Wang %A Uday C %A and De %A Ximin Liu %T Gradient Ricci Solitons on Almost Kenmotsu Manifolds %J Publications de l'Institut Mathématique %D 2015 %P 227 %V _N_S_98 %N 112 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM140527001W/ %R 10.2298/PIM140527001W %G en %F 10_2298_PIM140527001W
Yaning Wang; Uday C; and De; Ximin Liu. Gradient Ricci Solitons on Almost Kenmotsu Manifolds. Publications de l'Institut Mathématique, _N_S_98 (2015) no. 112, p. 227 . doi: 10.2298/PIM140527001W
Cité par Sources :