Commutators on $L^2$-Spaces
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 125 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Given a normal operator $N$ on a Hilbert space and an operator $X$ for which the commutator $K=XN-NX$ belongs to the Hilbert--Schmidt class, we discuss the possibility to represent $X$ as a sum of a Cauchy transform corresponding to $K$ in the spectral representation of $N$ and an operator commuting with $N$.
DOI : 10.2298/PIM140205001K
Classification : 47A58 47B38
Keywords: commutators, Cauchy-type integrals
@article{10_2298_PIM140205001K,
     author = {Vladimir Kapustin},
     title = {Commutators on $L^2${-Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {125 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM140205001K},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140205001K/}
}
TY  - JOUR
AU  - Vladimir Kapustin
TI  - Commutators on $L^2$-Spaces
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 125 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM140205001K/
DO  - 10.2298/PIM140205001K
LA  - en
ID  - 10_2298_PIM140205001K
ER  - 
%0 Journal Article
%A Vladimir Kapustin
%T Commutators on $L^2$-Spaces
%J Publications de l'Institut Mathématique
%D 2015
%P 125 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM140205001K/
%R 10.2298/PIM140205001K
%G en
%F 10_2298_PIM140205001K
Vladimir Kapustin. Commutators on $L^2$-Spaces. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 125 . doi : 10.2298/PIM140205001K. http://geodesic.mathdoc.fr/articles/10.2298/PIM140205001K/

Cité par Sources :