Commutators on $L^2$-Spaces
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 125
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Given a normal operator $N$ on a Hilbert space
and an operator $X$ for which the commutator $K=XN-NX$ belongs to the Hilbert--Schmidt class,
we discuss the possibility to represent $X$ as a sum of a Cauchy transform corresponding to $K$
in the spectral representation of $N$ and an operator commuting with $N$.
Classification :
47A58 47B38
Keywords: commutators, Cauchy-type integrals
Keywords: commutators, Cauchy-type integrals
@article{10_2298_PIM140205001K,
author = {Vladimir Kapustin},
title = {Commutators on $L^2${-Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {125 },
publisher = {mathdoc},
volume = {_N_S_97},
number = {111},
year = {2015},
doi = {10.2298/PIM140205001K},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM140205001K/}
}
Vladimir Kapustin. Commutators on $L^2$-Spaces. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 125 . doi: 10.2298/PIM140205001K
Cité par Sources :