Centers of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We determine the center $\mathcal C(K[x;\delta])$ of the ring of skew polynomials $K[x;\delta]$,
where $K$ is a field and $\delta$ is a non-zero derivation over $K$.
We prove that $\mathcal C(K[x;\delta])=\ker\delta,$ if $\delta$ is transcendental over $K$.
On the contrary, if $\delta$ is algebraic over $K$, then $\mathcal C(K[x;\delta])=(\ker\delta)[\eta(x)]$.
The term $\eta(x)$ is the minimal polynomial of $\delta$ over $K$.
Classification :
12E15, 12E10
Keywords: derivation, skew polynomial, center, ring, commutator
Keywords: derivation, skew polynomial, center, ring, commutator
@article{10_2298_PIM131217001A,
author = {Waldo Arriagada and Hugo Ram{\'\i}rez},
title = {Centers of {Skew} {Polynomial} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {181 },
year = {2015},
volume = {_N_S_97},
number = {111},
doi = {10.2298/PIM131217001A},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/}
}
TY - JOUR AU - Waldo Arriagada AU - Hugo Ramírez TI - Centers of Skew Polynomial Rings JO - Publications de l'Institut Mathématique PY - 2015 SP - 181 VL - _N_S_97 IS - 111 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/ DO - 10.2298/PIM131217001A LA - en ID - 10_2298_PIM131217001A ER -
Waldo Arriagada; Hugo Ramírez. Centers of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181 . doi: 10.2298/PIM131217001A
Cité par Sources :