Centers of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We determine the center $\mathcal C(K[x;\delta])$ of the ring of skew polynomials $K[x;\delta]$, where $K$ is a field and $\delta$ is a non-zero derivation over $K$. We prove that $\mathcal C(K[x;\delta])=\ker\delta,$ if $\delta$ is transcendental over $K$. On the contrary, if $\delta$ is algebraic over $K$, then $\mathcal C(K[x;\delta])=(\ker\delta)[\eta(x)]$. The term $\eta(x)$ is the minimal polynomial of $\delta$ over $K$.
DOI : 10.2298/PIM131217001A
Classification : 12E15, 12E10
Keywords: derivation, skew polynomial, center, ring, commutator
@article{10_2298_PIM131217001A,
     author = {Waldo Arriagada and Hugo Ram{\'\i}rez},
     title = {Centers of {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {181 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM131217001A},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/}
}
TY  - JOUR
AU  - Waldo Arriagada
AU  - Hugo Ramírez
TI  - Centers of Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 181 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/
DO  - 10.2298/PIM131217001A
LA  - en
ID  - 10_2298_PIM131217001A
ER  - 
%0 Journal Article
%A Waldo Arriagada
%A Hugo Ramírez
%T Centers of Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 2015
%P 181 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/
%R 10.2298/PIM131217001A
%G en
%F 10_2298_PIM131217001A
Waldo Arriagada; Hugo Ramírez. Centers of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181 . doi: 10.2298/PIM131217001A

Cité par Sources :