Centers of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We determine the center $\mathcal C(K[x;\delta])$ of the ring of skew polynomials $K[x;\delta]$,
where $K$ is a field and $\delta$ is a non-zero derivation over $K$.
We prove that $\mathcal C(K[x;\delta])=\ker\delta,$ if $\delta$ is transcendental over $K$.
On the contrary, if $\delta$ is algebraic over $K$, then $\mathcal C(K[x;\delta])=(\ker\delta)[\eta(x)]$.
The term $\eta(x)$ is the minimal polynomial of $\delta$ over $K$.
Classification :
12E15, 12E10
Keywords: derivation, skew polynomial, center, ring, commutator
Keywords: derivation, skew polynomial, center, ring, commutator
@article{10_2298_PIM131217001A,
author = {Waldo Arriagada and Hugo Ram{\'\i}rez},
title = {Centers of {Skew} {Polynomial} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {181 },
publisher = {mathdoc},
volume = {_N_S_97},
number = {111},
year = {2015},
doi = {10.2298/PIM131217001A},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/}
}
TY - JOUR AU - Waldo Arriagada AU - Hugo Ramírez TI - Centers of Skew Polynomial Rings JO - Publications de l'Institut Mathématique PY - 2015 SP - 181 VL - _N_S_97 IS - 111 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/ DO - 10.2298/PIM131217001A LA - en ID - 10_2298_PIM131217001A ER -
Waldo Arriagada; Hugo Ramírez. Centers of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181 . doi: 10.2298/PIM131217001A
Cité par Sources :