Centers of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We determine the center $\mathcal C(K[x;\delta])$ of the ring of skew polynomials $K[x;\delta]$, where $K$ is a field and $\delta$ is a non-zero derivation over $K$. We prove that $\mathcal C(K[x;\delta])=\ker\delta,$ if $\delta$ is transcendental over $K$. On the contrary, if $\delta$ is algebraic over $K$, then $\mathcal C(K[x;\delta])=(\ker\delta)[\eta(x)]$. The term $\eta(x)$ is the minimal polynomial of $\delta$ over $K$.
DOI : 10.2298/PIM131217001A
Classification : 12E15, 12E10
Keywords: derivation, skew polynomial, center, ring, commutator
@article{10_2298_PIM131217001A,
     author = {Waldo Arriagada and Hugo Ram{\'\i}rez},
     title = {Centers of {Skew} {Polynomial} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {181 },
     publisher = {mathdoc},
     volume = {_N_S_97},
     number = {111},
     year = {2015},
     doi = {10.2298/PIM131217001A},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/}
}
TY  - JOUR
AU  - Waldo Arriagada
AU  - Hugo Ramírez
TI  - Centers of Skew Polynomial Rings
JO  - Publications de l'Institut Mathématique
PY  - 2015
SP  - 181 
VL  - _N_S_97
IS  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/
DO  - 10.2298/PIM131217001A
LA  - en
ID  - 10_2298_PIM131217001A
ER  - 
%0 Journal Article
%A Waldo Arriagada
%A Hugo Ramírez
%T Centers of Skew Polynomial Rings
%J Publications de l'Institut Mathématique
%D 2015
%P 181 
%V _N_S_97
%N 111
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/
%R 10.2298/PIM131217001A
%G en
%F 10_2298_PIM131217001A
Waldo Arriagada; Hugo Ramírez. Centers of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_97 (2015) no. 111, p. 181 . doi : 10.2298/PIM131217001A. http://geodesic.mathdoc.fr/articles/10.2298/PIM131217001A/

Cité par Sources :