PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 131 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring $R/I$ is weak Armendariz, where $I$ is nilpotent ideal, we prove that $R$ is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz structure. Armendariz rings of Laurent power series are also considered.
DOI : 10.2298/PIM0999131J
Classification : 16S36 16U90
@article{10_2298_PIM0999131J,
     author = {Du\v{s}an Jokanovi\'c},
     title = {PROPERTIES {OF} {ARMENDARIZ} {RINGS} {AND} {WEAK} {ARMENDARIZ} {RINGS}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {131 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999131J},
     zbl = {1234.16016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999131J/}
}
TY  - JOUR
AU  - Dušan Jokanović
TI  - PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 131 
VL  - _N_S_85
IS  - 99
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999131J/
DO  - 10.2298/PIM0999131J
LA  - en
ID  - 10_2298_PIM0999131J
ER  - 
%0 Journal Article
%A Dušan Jokanović
%T PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS
%J Publications de l'Institut Mathématique
%D 2009
%P 131 
%V _N_S_85
%N 99
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999131J/
%R 10.2298/PIM0999131J
%G en
%F 10_2298_PIM0999131J
Dušan Jokanović. PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 131 . doi : 10.2298/PIM0999131J. http://geodesic.mathdoc.fr/articles/10.2298/PIM0999131J/

Cité par Sources :