OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 119
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Oscillations of a system with strong quadratic damping are considered.
For the exact analytical form of the energy-displacement function
the explicit form of the maximal amplitudes of vibration are obtained by introducing the Lambert-w function.
Comparing the neighbor maximal amplitudes and the corresponding energies
the conclusions about the energy dissipation is given.
The approximate solution for a strong nonlinear differential equation
which describes the motion of the oscillator with quadratic damping
is calculated applying the elliptic-harmonic-balance method.
The accuracy of the solution is affirmed by comparing the maximal displacements
obtained using the approximate method with the exact one obtained by energy method.
@article{10_2298_PIM0999119C,
author = {Livija Cveti\'canin},
title = {OSCILLATOR {WITH} {STRONG} {QUADRATIC} {DAMPING} {FORCE}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
publisher = {mathdoc},
volume = {_N_S_85},
number = {99},
year = {2009},
doi = {10.2298/PIM0999119C},
zbl = {1224.34107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999119C/}
}
TY - JOUR AU - Livija Cvetićanin TI - OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE JO - Publications de l'Institut Mathématique PY - 2009 SP - 119 VL - _N_S_85 IS - 99 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999119C/ DO - 10.2298/PIM0999119C LA - en ID - 10_2298_PIM0999119C ER -
Livija Cvetićanin. OSCILLATOR WITH STRONG QUADRATIC DAMPING FORCE. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 119 . doi: 10.2298/PIM0999119C
Cité par Sources :