SPACELIKE AND TIMELIKE NORMAL CURVES IN MINKOWSKI SPACE-TIME
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 111 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We define normal curves in Minkowski space-time $E^4_1$. In particular, we characterize the spacelike normal curves in $E^4_1$ whose Frenet frame contains only non-null vector fields, as well as the timelike normal curves in $E^4_1$, in terms of their curvature functions. Moreover, we obtain an explicit equation of such normal curves with constant curvatures.
DOI : 10.2298/PIM0999111I
Classification : 53C50 53C40
Keywords: Minkowski space-time, normal curve, curvature
@article{10_2298_PIM0999111I,
     author = {Kazim \.Ilarslan and Emilija Ne\v{s}ovi\'c},
     title = {SPACELIKE {AND} {TIMELIKE} {NORMAL} {CURVES} {IN} {MINKOWSKI} {SPACE-TIME}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {111 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999111I},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999111I/}
}
TY  - JOUR
AU  - Kazim İlarslan
AU  - Emilija Nešović
TI  - SPACELIKE AND TIMELIKE NORMAL CURVES IN MINKOWSKI SPACE-TIME
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 111 
VL  - _N_S_85
IS  - 99
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999111I/
DO  - 10.2298/PIM0999111I
LA  - en
ID  - 10_2298_PIM0999111I
ER  - 
%0 Journal Article
%A Kazim İlarslan
%A Emilija Nešović
%T SPACELIKE AND TIMELIKE NORMAL CURVES IN MINKOWSKI SPACE-TIME
%J Publications de l'Institut Mathématique
%D 2009
%P 111 
%V _N_S_85
%N 99
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999111I/
%R 10.2298/PIM0999111I
%G en
%F 10_2298_PIM0999111I
Kazim İlarslan; Emilija Nešović. SPACELIKE AND TIMELIKE NORMAL CURVES IN MINKOWSKI SPACE-TIME. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 111 . doi : 10.2298/PIM0999111I. http://geodesic.mathdoc.fr/articles/10.2298/PIM0999111I/

Cité par Sources :