DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 39 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The distance or $D$-eigenvalues of a graph $G$ are the eigenvalues of its distance matrix. The distance or $D$-energy $E_D(G)$ of the graph $G$ is the sum of the absolute values of its $D$-eigenvalues. Two graphs $G_1$ and $G_2$ are said to be $D$-equienergetic if $E_D(G_1)=E_D(G_2)$. Let $F_1$ be the 5-vertex path, $F_2$ the graph obtained by identifying one vertex of a triangle with one end vertex of the 3-vertex path, $F_3$ the graph obtained by identifying a vertex of a triangle with a vertex of another triangle and $F_4$ be the graph obtained by identifying one end vertex of a 4-vertex star with a middle vertex of a 3-vertex path. In this paper we show that if $G$ is $r$-regular, with $\diam(G)\leq2$, and $F_i$, $i=1,2,3,4$, are not induced subgraphs of $G$, then the $k$-th iterated line graph $L^k(G)$ has exactly one positive $D$-eigenvalue. Further, if $G$ is $r$-regular, of order $n$, $\diam(G)\leq2$, and $G$ does not have $F_i$, $i=1,2,3,4$, as an induced subgraph, then for $k\geq1$, $E_D(L^k(G))$ depends solely on $n$ and $r$. This result leads to the construction of non $D$-cospectral, $D$-equienergetic graphs having same number of vertices and same number of edges.
DOI : 10.2298/PIM0999039R
Classification : 05C12 05C50
@article{10_2298_PIM0999039R,
     author = {H. S. Ramane and D. S. Revankar and I. Gutman and H. B. Walikar},
     title = {DISTANCE {SPECTRA} {AND} {DISTANCE} {ENERGIES} {OF} {ITERATED} {LINE} {GRAPHS} {OF} {REGULAR} {GRAPHS}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {39 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999039R},
     zbl = {1249.05251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/}
}
TY  - JOUR
AU  - H. S. Ramane
AU  - D. S. Revankar
AU  - I. Gutman
AU  - H. B. Walikar
TI  - DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 39 
VL  - _N_S_85
IS  - 99
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/
DO  - 10.2298/PIM0999039R
LA  - en
ID  - 10_2298_PIM0999039R
ER  - 
%0 Journal Article
%A H. S. Ramane
%A D. S. Revankar
%A I. Gutman
%A H. B. Walikar
%T DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS
%J Publications de l'Institut Mathématique
%D 2009
%P 39 
%V _N_S_85
%N 99
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/
%R 10.2298/PIM0999039R
%G en
%F 10_2298_PIM0999039R
H. S. Ramane; D. S. Revankar; I. Gutman; H. B. Walikar. DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 39 . doi : 10.2298/PIM0999039R. http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/

Cité par Sources :