ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
It is proved that, for $T^{\varepsilon}\leq G=G(T)\leq\frac12\sqrt{T}$,
\begin{align*}
ınt_T^{2T}\Bigl(I_1(t+G,G)-I_1(t,G)\Bigr)^2dt
= TGum_{j=0}^3a_jłog^j\biggl(\frac{qrt{T}}{G}\biggr)\\
\quad + O_\varepsilon(T^{1+\varepsilon}G^{1/2}+T^{1/2+\varepsilon}G^2)
\end{align*}
with some explicitly computable constants $a_j\;(a_3>0)$ where, for fixed $k\in\mathbb N$,
$
I_k(t,G)=\frac1{qrt{\pi}}ınt_{-ınfty}^ınfty |\z(frac12+it+iu)|^{2k}e^{-(u/G)^2}du.
$
The generalizations to the mean square of $I_1(t+U,G)-I_1(t,G)$ over $[T,\,T+H]$
and the estimation of the mean square of $I_2(t+U,G)-I_2(t,G)$ are also discussed.
DOI :
10.2298/PIM0999001I
Classification :
11M06 11N37
Keywords: The Riemann zeta-function, the mean square in short intervals, upper bounds
Keywords: The Riemann zeta-function, the mean square in short intervals, upper bounds
@article{10_2298_PIM0999001I,
author = {Aleksandar Ivi\'c},
title = {ON {THE} {MEAN} {SQUARE} {OF} {THE} {RIEMANN} {ZETA-FUNCTION} {IN} {SHORT} {INTERVALS}},
journal = {Publications de l'Institut Math\'ematique},
pages = {1 },
publisher = {mathdoc},
volume = {_N_S_85},
number = {99},
year = {2009},
doi = {10.2298/PIM0999001I},
zbl = {1224.11074},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/}
}
TY - JOUR AU - Aleksandar Ivić TI - ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS JO - Publications de l'Institut Mathématique PY - 2009 SP - 1 VL - _N_S_85 IS - 99 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/ DO - 10.2298/PIM0999001I LA - en ID - 10_2298_PIM0999001I ER -
%0 Journal Article %A Aleksandar Ivić %T ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS %J Publications de l'Institut Mathématique %D 2009 %P 1 %V _N_S_85 %N 99 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/ %R 10.2298/PIM0999001I %G en %F 10_2298_PIM0999001I
Aleksandar Ivić. ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 1 . doi: 10.2298/PIM0999001I
Cité par Sources :