ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is proved that, for $T^{\varepsilon}\leq G=G(T)\leq\frac12\sqrt{T}$, \begin{align*} ınt_T^{2T}\Bigl(I_1(t+G,G)-I_1(t,G)\Bigr)^2dt = TGum_{j=0}^3a_jłog^j\biggl(\frac{qrt{T}}{G}\biggr)\\ \quad + O_\varepsilon(T^{1+\varepsilon}G^{1/2}+T^{1/2+\varepsilon}G^2) \end{align*} with some explicitly computable constants $a_j\;(a_3>0)$ where, for fixed $k\in\mathbb N$, $ I_k(t,G)=\frac1{qrt{\pi}}ınt_{-ınfty}^ınfty |\z(frac12+it+iu)|^{2k}e^{-(u/G)^2}du. $ The generalizations to the mean square of $I_1(t+U,G)-I_1(t,G)$ over $[T,\,T+H]$ and the estimation of the mean square of $I_2(t+U,G)-I_2(t,G)$ are also discussed.
DOI : 10.2298/PIM0999001I
Classification : 11M06 11N37
Keywords: The Riemann zeta-function, the mean square in short intervals, upper bounds
@article{10_2298_PIM0999001I,
     author = {Aleksandar Ivi\'c},
     title = {ON {THE} {MEAN} {SQUARE} {OF} {THE} {RIEMANN} {ZETA-FUNCTION} {IN} {SHORT} {INTERVALS}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999001I},
     zbl = {1224.11074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 1 
VL  - _N_S_85
IS  - 99
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/
DO  - 10.2298/PIM0999001I
LA  - en
ID  - 10_2298_PIM0999001I
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS
%J Publications de l'Institut Mathématique
%D 2009
%P 1 
%V _N_S_85
%N 99
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/
%R 10.2298/PIM0999001I
%G en
%F 10_2298_PIM0999001I
Aleksandar Ivić. ON THE MEAN SQUARE OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 1 . doi : 10.2298/PIM0999001I. http://geodesic.mathdoc.fr/articles/10.2298/PIM0999001I/

Cité par Sources :