Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We analyze the boundedness of the wavelet transform ${\mathcal W}_g f$of the quasiasymptotically bounded distribution $f$.Assuming that the distribution $f\in\mathcal{S}'(\mathbb R)$is quasiasymptotically or $r$-quasiasymptotically bounded at a point or at infinityrelated to a continuous and positive function,we obtain results for the localization of its wavelet transform.
DOI : 10.2298/PIM0900115S
Classification : 46F12 42C40
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
@article{10_2298_PIM0900115S,
     author = {Katerina Saneva},
     title = {Application of the {Quasiasymptotic} boundedness of distributions of {Wavelet} transform},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {115 },
     publisher = {mathdoc},
     volume = {_N_S_86},
     number = {100},
     year = {2009},
     doi = {10.2298/PIM0900115S},
     zbl = {1265.46059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/}
}
TY  - JOUR
AU  - Katerina Saneva
TI  - Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 115 
VL  - _N_S_86
IS  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/
DO  - 10.2298/PIM0900115S
LA  - en
ID  - 10_2298_PIM0900115S
ER  - 
%0 Journal Article
%A Katerina Saneva
%T Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
%J Publications de l'Institut Mathématique
%D 2009
%P 115 
%V _N_S_86
%N 100
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/
%R 10.2298/PIM0900115S
%G en
%F 10_2298_PIM0900115S
Katerina Saneva. Application of the Quasiasymptotic boundedness of distributions of Wavelet transform. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115 . doi: 10.2298/PIM0900115S

Cité par Sources :