Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We analyze the boundedness of the wavelet transform ${\mathcal W}_g f$of the quasiasymptotically bounded distribution $f$.Assuming that the distribution $f\in\mathcal{S}'(\mathbb R)$is quasiasymptotically or $r$-quasiasymptotically bounded at a point or at infinityrelated to a continuous and positive function,we obtain results for the localization of its wavelet transform.
DOI :
10.2298/PIM0900115S
Classification :
46F12 42C40
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
@article{10_2298_PIM0900115S,
author = {Katerina Saneva},
title = {Application of the {Quasiasymptotic} boundedness of distributions of {Wavelet} transform},
journal = {Publications de l'Institut Math\'ematique},
pages = {115 },
publisher = {mathdoc},
volume = {_N_S_86},
number = {100},
year = {2009},
doi = {10.2298/PIM0900115S},
zbl = {1265.46059},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/}
}
TY - JOUR AU - Katerina Saneva TI - Application of the Quasiasymptotic boundedness of distributions of Wavelet transform JO - Publications de l'Institut Mathématique PY - 2009 SP - 115 VL - _N_S_86 IS - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/ DO - 10.2298/PIM0900115S LA - en ID - 10_2298_PIM0900115S ER -
%0 Journal Article %A Katerina Saneva %T Application of the Quasiasymptotic boundedness of distributions of Wavelet transform %J Publications de l'Institut Mathématique %D 2009 %P 115 %V _N_S_86 %N 100 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/ %R 10.2298/PIM0900115S %G en %F 10_2298_PIM0900115S
Katerina Saneva. Application of the Quasiasymptotic boundedness of distributions of Wavelet transform. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115 . doi: 10.2298/PIM0900115S
Cité par Sources :