Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We analyze the boundedness of the wavelet transform ${\mathcal W}_g f$of the quasiasymptotically bounded distribution $f$.Assuming that the distribution $f\in\mathcal{S}'(\mathbb R)$is quasiasymptotically or $r$-quasiasymptotically bounded at a point or at infinityrelated to a continuous and positive function,we obtain results for the localization of its wavelet transform.
DOI :
10.2298/PIM0900115S
Classification :
46F12 42C40
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
@article{10_2298_PIM0900115S,
author = {Katerina Saneva},
title = {Application of the {Quasiasymptotic} boundedness of distributions of {Wavelet} transform},
journal = {Publications de l'Institut Math\'ematique},
pages = {115 },
year = {2009},
volume = {_N_S_86},
number = {100},
doi = {10.2298/PIM0900115S},
zbl = {1265.46059},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/}
}
TY - JOUR AU - Katerina Saneva TI - Application of the Quasiasymptotic boundedness of distributions of Wavelet transform JO - Publications de l'Institut Mathématique PY - 2009 SP - 115 VL - _N_S_86 IS - 100 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/ DO - 10.2298/PIM0900115S LA - en ID - 10_2298_PIM0900115S ER -
%0 Journal Article %A Katerina Saneva %T Application of the Quasiasymptotic boundedness of distributions of Wavelet transform %J Publications de l'Institut Mathématique %D 2009 %P 115 %V _N_S_86 %N 100 %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/ %R 10.2298/PIM0900115S %G en %F 10_2298_PIM0900115S
Katerina Saneva. Application of the Quasiasymptotic boundedness of distributions of Wavelet transform. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115 . doi: 10.2298/PIM0900115S
Cité par Sources :