Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We analyze the boundedness of the wavelet transform ${\mathcal W}_g f$of the quasiasymptotically bounded distribution $f$.Assuming that the distribution $f\in\mathcal{S}'(\mathbb R)$is quasiasymptotically or $r$-quasiasymptotically bounded at a point or at infinityrelated to a continuous and positive function,we obtain results for the localization of its wavelet transform.
DOI : 10.2298/PIM0900115S
Classification : 46F12 42C40
Keywords: Wavelet transform, tempered distributions, quasiasymptotic boundedness
@article{10_2298_PIM0900115S,
     author = {Katerina Saneva},
     title = {Application of the {Quasiasymptotic} boundedness of distributions of {Wavelet} transform},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {115 },
     publisher = {mathdoc},
     volume = {_N_S_86},
     number = {100},
     year = {2009},
     doi = {10.2298/PIM0900115S},
     zbl = {1265.46059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/}
}
TY  - JOUR
AU  - Katerina Saneva
TI  - Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
JO  - Publications de l'Institut Mathématique
PY  - 2009
SP  - 115 
VL  - _N_S_86
IS  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/
DO  - 10.2298/PIM0900115S
LA  - en
ID  - 10_2298_PIM0900115S
ER  - 
%0 Journal Article
%A Katerina Saneva
%T Application of the Quasiasymptotic boundedness of distributions of Wavelet transform
%J Publications de l'Institut Mathématique
%D 2009
%P 115 
%V _N_S_86
%N 100
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/
%R 10.2298/PIM0900115S
%G en
%F 10_2298_PIM0900115S
Katerina Saneva. Application of the Quasiasymptotic boundedness of distributions of Wavelet transform. Publications de l'Institut Mathématique, _N_S_86 (2009) no. 100, p. 115 . doi : 10.2298/PIM0900115S. http://geodesic.mathdoc.fr/articles/10.2298/PIM0900115S/

Cité par Sources :